<span>(A) Find the approximate length of the plank. Round to the nearest tenth of a foot.
Given that the distance of the ground is 3ft.
In order to get the length of the plank,
we can use the this one.
cos 49 = ground / plank
cos 49 = 3 / plank
plank = cos 49 / 3
plank = 0.10 ft
</span><span>(b) Find the height above the ground where the plank touches the wall. Round to the nearest tenth of a foot.
</span><span>
The remaining angle is equal to
angle = 180 - (90+49)
angle = 41
Finding the height.
tan 41 = height / ground
tan 41 = height / 3
height = tan 41 / 3
height = 0.05 ft.
(A) 0.10 feet
(B) 0.05 feet</span>
Answer:
wheres the work???⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Answer:
The probability that the diagnosis is correct is 0.95249.
Step-by-step explanation:
We are given that the American Diabetes Association estimates that 8.3% of people in the United States have diabetes.
Suppose that a medical lab has developed a simple diagnostic test for diabetes that is 98% accurate for people who have the disease and 95% accurate for people who do not have it.
Let the probability that people in the United States have diabetes = P(D) = 0.083.
So, the probability that people in the United States do not have diabetes = P(D') = 1 - P(D) = 1 - 0.083 = 0.917
Also, let A = <u><em>event that the diagnostic test is accurate</em></u>
So, the probability that a simple diagnostic test for diabetes is accurate for people who have the disease = P(A/D) = 0.98
And the probability that a simple diagnostic test for diabetes is accurate for people who do not have the disease = P(A/D') = 0.95
<u>Now, the probability that the diagnosis is correct is given by; </u>
Probability = P(D)
P(A/D) + P(D')
P(A/D')
= (0.083
0.98) + (0.917
0.95)
= 0.08134 + 0.87115
= 0.95249
Hence, the probability that the diagnosis is correct is 0.95249.
Answer:
the answer to your problem would be 420
20, because 5 there and five back then 1 and 1 back and four and four back if not then just add all 5+4+1=10