1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
3 years ago
10

Why is using coins as money easier than using gold bars?

Mathematics
1 answer:
Solnce55 [7]3 years ago
5 0

Answer:

because coins are more portable

Step-by-step explanation:


You might be interested in
Please help how to solve
tatiyna

Answer:

=  > in \: the \: bigger \: triangle \\ height = 14 \: ft \\ base = 22.5 \: ft \\  =  > in \: smaller \: triangle \\ height = x \: ft \\ base = 9 \: ft \\ using \: ratios \\  \frac{bigger \: height}{smaller \: height}  =  \frac{bigger \: base}{smaller \: base}  \\  \frac{14}{x}  =  \frac{22.5}{9}  \\  \frac{14}{x}  = 2.5 \\ x =  \frac{14}{2.5}  \\ x = 5.6 \: ft

7 0
3 years ago
After being rearranged and simplified, which of the following equations could be solved using the quadratic formula?
dmitriy555 [2]
A. 2x^2 - 3x + 10 = 2x + 21
2x^2 - 3x - 2x + 10 - 21 = 0
2x^2 - 5x - 11 = 0                              (quadratic equation)

2x^2 - 6x - 7 = 2x^2
2x^2 - 2x^2 - 6x - 7 = 0
-6x - 7 = 0                                          (not a quadratic equation)

5x^2 + 2x - 4 = 2x^2
5x^2 - 2x^2 + 2x - 4 = 0
3x^2 + 2x - 4                                      (quadratic equation)

5x^3 - 3x + 10 = 2x^2
5x^3 - 2x^2 - 3x + 10 = 0                    (not a quadratic equation)

Therefore, options a and c can be solved using the quadratic formula.
3 0
3 years ago
interpret r(t) as the position of a moving object at time t. Find the curvature of the path and determine thetangential and norm
Igoryamba

Answer:

The curvature is \kappa=1

The tangential component of acceleration is a_{\boldsymbol{T}}=0

The normal component of acceleration is a_{\boldsymbol{N}}=1 (2)^2=4

Step-by-step explanation:

To find the curvature of the path we are going to use this formula:

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}

where

\boldsymbol{T}} is the unit tangent vector.

\frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| is the speed of the object

We need to find \boldsymbol{r}'(t), we know that \boldsymbol{r}(t)=cos \:2t \:\boldsymbol{i}+sin \:2t \:\boldsymbol{j}+ \:\boldsymbol{k} so

\boldsymbol{r}'(t)=\frac{d}{dt}\left(cos\left(2t\right)\right)\:\boldsymbol{i}+\frac{d}{dt}\left(sin\left(2t\right)\right)\:\boldsymbol{j}+\frac{d}{dt}\left(1)\right\:\boldsymbol{k}\\\boldsymbol{r}'(t)=-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}

Next , we find the magnitude of derivative of the position vector

|| \boldsymbol{r}'(t)}||=\sqrt{(-2\sin \left(2t\right))^2+(2\cos \left(2t\right))^2} \\|| \boldsymbol{r}'(t)}||=\sqrt{2^2\sin ^2\left(2t\right)+2^2\cos ^2\left(2t\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4\left(\sin ^2\left(2t\right)+\cos ^2\left(2t\right)\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4}\sqrt{\sin ^2\left(2t\right)+\cos ^2\left(2t\right)}\\\\\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1\\\\|| \boldsymbol{r}'(t)}||=2\sqrt{1}=2

The unit tangent vector is defined by

\boldsymbol{T}}=\frac{\boldsymbol{r}'(t)}{||\boldsymbol{r}'(t)||}

\boldsymbol{T}}=\frac{-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}}{2} =\sin \left(2t\right)+\cos \left(2t\right)

We need to find the derivative of unit tangent vector

\boldsymbol{T}'=\frac{d}{dt}(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j}) \\\boldsymbol{T}'=-2\cdot(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j})

And the magnitude of the derivative of unit tangent vector is

||\boldsymbol{T}'||=2\sqrt{\cos ^2\left(x\right)+\sin ^2\left(x\right)} =2

The curvature is

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}=\frac{2}{2} =1

The tangential component of acceleration is given by the formula

a_{\boldsymbol{T}}=\frac{d^2s}{dt^2}

We know that \frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| and ||\boldsymbol{r}'(t)}||=2

\frac{d}{dt}\left(2\right)\: = 0 so

a_{\boldsymbol{T}}=0

The normal component of acceleration is given by the formula

a_{\boldsymbol{N}}=\kappa (\frac{ds}{dt})^2

We know that \kappa=1 and \frac{ds}{dt}=2 so

a_{\boldsymbol{N}}=1 (2)^2=4

3 0
3 years ago
5-|n-1|=-2<br><br> | | stands for absolute value
BlackZzzverrR [31]

Answer:

n = 8 or n = −6

Explanation:

First, isolate the absolute value:

5 − |n − 1| = −2

7 − |n − 1| = 0

7 = |n − 1|

Then, split this into two equations, since the result of the absolute value could be positive or negative:

7 = n − 1                           7 = −(n − 1)

8 = n                                7 = −n + 1

                                       n = −6

4 0
2 years ago
Read 2 more answers
Helppppppp!!!! me ill put you brainliest!
Damm [24]

Answer:

21 3/4 - 13 1/8 = 8 5/8 ft longer

Step-by-step explanation:

We subtract the blue rope from the green rope

21 3/4 - 13 1/8

We need to get a common denominator of 8

21 3/4*2/2 - 13 1/8

21 6/8 - 13 1/8

8 5/8

4 0
3 years ago
Other questions:
  • What are the solutions of the equation (2x + 3)2 + 8(2x + 3) + 11 = 0
    14·1 answer
  • X^3 + 8 = (x+2)(____)<br> What do I have to multiply by (x+2) to get x^3 + 8
    14·1 answer
  • What is the end behavior of the function f(x)=-3/4 x^2​
    7·1 answer
  • At the end of the car lease, you pay a certain amount if you decide to buy the car. What is this amount called? A. interest B. l
    9·2 answers
  • Suppose a teacher finds that the
    10·1 answer
  • What is measurement angle B?
    8·2 answers
  • Helppp plzzz fasttt !!!!
    8·2 answers
  • Plz help with these 2 questions and thx !
    7·2 answers
  • Use the distributive property to expand the following expression. Then combine the like terms.
    8·1 answer
  • Pe
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!