Answer:
AED 50$
Step-by-step explanation:
8 pencil * 3 +5 pens *6
Answer:
Step-by-step explanation:
You are being asked to compare the value of a growing infinite geometric series to a fixed constant. Such a series will always eventually have a sum that exceeds any given fixed constant.
__
<h3>a)</h3>
Angelina will get more money from the Choice 1 method of payment. The sequence of payments is a (growing) geometric sequence, so the payments and their sum will eventually exceed the alternative.
__
<h3>c)</h3>
For a first term of 1 and a common ratio of 2, the sum of n terms of the geometric series is given by ...
Sn = a1×(r^n -1)/(r -1) . . . . . . . . . . series with first term a1, common ratio r
We want to find n such that ...
Sn ≥ 1,000,000
1 × (2^n -1)/(2 -1) ≥ 1,000,000
2^n ≥ 1,000,001 . . . . add 1
n ≥ log(1,000,001)/log(2) . . . . . take the base-2 logarithm
n ≥ 19.93
The total Angelina receives from Choice 1 will exceed $1,000,000 after 20 days.
Answer:
12 cups
Step-by-step explanation:
1 cup equals 8 ounces, 1.5 cups equal 12 ounces. Multiply that by 8 you get 12 cups.
m∠FDE = 52°
Solution:
Given data:
DE ≅ DF, CD || BE, BC || FD and m∠ABF = 116°
<em>Sum of the adjacent angles in a straight line = 180°</em>
m∠ABF + m∠CBF = 180°
116° + m∠CBF = 180°
m∠CBF = 64°
If CD || BE, then CD || BF.
Hence CD || BE and BE || FD.
Therefore BFCD is a parallelogam.
<em>In parallelogram, Adjacent angles form a linear pair.</em>
m∠CBF + m∠BFD = 180°
64° + m∠BFD = 180°
m∠BFD = 116°
<em>Sum of the adjacent angles in a straight line = 180°</em>
m∠BFD + m∠DFE = 180°
116° + m∠DFE = 180°
m∠DFE = 64°
we know that DE ≅ DF.
<em>In triangle, angles opposite to equal sides are equal.</em>
m∠DFE = m∠DEF
m∠DEF = 64°
<em>sum of all the angles of a triangle = 180°</em>
m∠DFE + m∠DEF + m∠FDE = 180°
64° + 64° + m∠FDE = 180°
m∠FDE = 52°
Considering the perimeter (P)

where b is the base and h is the height, then

Being the area (A)