Answer:
Domain {-2,0,2}
Range {-2,0,2}
Relation is a Function
Step-by-step explanation:
We are given a relation:
{ (-2,-2) , (0,0) , (2,2) }
Domain can be defined as the all possible values of x for a relation. It is considered as a set of all first values of the ordered pairs of a given relation.
Domain of the given relation is {-2,0,2}
Range can be defined as all possible value of y which corresponds to the values of x in the domain. It is considered as a set of all second values of the ordered pairs of a given relation.
Range of the given relation is {-2,0,2}
A relation is a function if only there is one value of y for each value of x. If in the set of ordered pair of the relation, the value of x gets repeated, then the relation is not a function.
As no values of x are getting repeated, the relation is a function.
Answer:
x = 6
Step-by-step explanation:
∠ DBC + ∠ ABC = ∠ ABD , substitute values
5x - 4 + 8x - 3 = 79
13x + 1 = 79 ( subtract 1 from both sides )
13x = 78 ( divide both sides by 13 )
x = 6
Answer:
17
(
2
x
+
1
)
Step-by-step explanation:
Factor the polynomial.
Answer:
14
Step-by-step explanation:
Hope this will help you....
This is a simple problem based on combinatorics which can be easily tackled by using inclusion-exclusion principle.
We are asked to find number of positive integers less than 1,000,000 that are not divisible by 6 or 4.
let n be the number of positive integers.
∴ 1≤n≤999,999
Let c₁ be the set of numbers divisible by 6 and c₂ be the set of numbers divisible by 4.
Let N(c₁) be the number of elements in set c₁ and N(c₂) be the number of elements in set c₂.
∴N(c₁) =

N(c₂) =

∴N(c₁c₂) =

∴ Number of positive integers that are not divisible by 4 or 6,
N(c₁`c₂`) = 999,999 - (166666+250000) + 41667 = 625000
Therefore, 625000 integers are not divisible by 6 or 4