Linear pairs are when 2 lines intersect, and are adjacent angles.
The measure of a straight angle is 180 degrees, so a linear pair<span> of angles must add up to 180 degrees.
</span>
I hope my answer helped!!!
Answer:
Salena's got to the library first
Step-by-step explanation:
12½ miles = 25/2 miles
2½ miles = 5/2 miles
5¾ miles = 23/4 miles
114 miles = 114 miles
Salena's time of arrival =
if 5/2 miles : 5 minutes
then 25/2 miles : ?
25/2 ÷ 5/2. × 5
25/2 × 2/5 × 5
25 minutes
Justin 's time of arrival=
if 23/4 miles : 12 minutes
25/2 miles : ?
25/2 ÷ 23/4 ×12
25/2 × 4/23 ×12
26 minutes approximately
Brandon 's time of arrival=
if 114 miles : 258 minutes
25/2 miles : ?
25/2 ÷114 ×258
25/2 × 1/114×258
25 × 1/57 × 258
113 minutes approximately
6.55 meters of fencing. Simply subtract 13.45 meters and 9.5 meters from 42.6 meters, and then divide by 3.
Answer:
-1 1/3 as a mixed number (if they ask for it in simplest form, choose this one)
-4/3 as an improper fraction
Step-by-step explanation:
1. Keep, change, flip
4/5 x -5/3
2. Cross cancel the fives
4/1 x -1/3
3. Simplify
-4/3 or -1 1/3 (they're equivalent)
![\bf \begin{array}{lllll} round(x)&\boxed{1}&2&3&\boxed{4}\\\\ wrestlers[f(x)]&\boxed{64}&32&18&\boxed{9} \end{array} \\\\\\ slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ f(x_2)}}-{{ f(x_1)}}}{{{ x_2}}-{{ x_1}}}\impliedby \begin{array}{llll} average\ rate\\ of\ change \end{array}\\\\ -------------------------------\\\\ f(x)= \qquad \begin{cases} x_1=1\\ x_2=4 \end{cases}\implies \cfrac{f(4)-f(1)}{4-1}\implies \cfrac{9-64}{4-1}\implies \cfrac{-55}{3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Blllll%7D%0Around%28x%29%26%5Cboxed%7B1%7D%262%263%26%5Cboxed%7B4%7D%5C%5C%5C%5C%0Awrestlers%5Bf%28x%29%5D%26%5Cboxed%7B64%7D%2632%2618%26%5Cboxed%7B9%7D%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0Aslope%20%3D%20%7B%7B%20m%7D%7D%3D%20%5Ccfrac%7Brise%7D%7Brun%7D%20%5Cimplies%20%0A%5Ccfrac%7B%7B%7B%20f%28x_2%29%7D%7D-%7B%7B%20f%28x_1%29%7D%7D%7D%7B%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%7D%5Cimpliedby%20%0A%5Cbegin%7Barray%7D%7Bllll%7D%0Aaverage%5C%20rate%5C%5C%0Aof%5C%20change%0A%5Cend%7Barray%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0Af%28x%29%3D%20%20%20%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0Ax_1%3D1%5C%5C%0Ax_2%3D4%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7Bf%284%29-f%281%29%7D%7B4-1%7D%5Cimplies%20%5Ccfrac%7B9-64%7D%7B4-1%7D%5Cimplies%20%5Ccfrac%7B-55%7D%7B3%7D)
55 over 3, or 55 wrestlers for every 3 rounds, but the wrestlers value is negative, thus 55 "less" wrestlers for every 3 rounds on average.