Answer:
B
Step-by-step explanation:
A coin has two sides so there is a 50% chance of getting heads or tails.
Answer:
five hundred fifty thousandths
Step-by-step explanation:
Recognize the place value of the rightmost digit, and write the name of the number that ends in that place.
The third place to the right of the decimal point is the <em>thousandths</em> place. The number between that and the decimal point is 550, <em>five hundred fifty</em>.
five hundred fifty thousandths
Answer:
4/9, or 0.4∞
but 0.4∞ has a repeating decimal, so the expanded form is ∞ also
Answer:
a. v(t)= -6.78
+ 16.33 b. 16.33 m/s
Step-by-step explanation:
The differential equation for the motion is given by mv' = mg - γv. We re-write as mv' + γv = mg ⇒ v' + γv/m = g. ⇒ v' + kv = g. where k = γ/m.Since this is a linear first order differential equation, We find the integrating factor μ(t)=
=
. We now multiply both sides of the equation by the integrating factor.
μv' + μkv = μg ⇒
v' + k
v = g
⇒ [v
]' = g
. Integrating, we have
∫ [v
]' = ∫g
v
= 
+ c
v(t)=
+ c
.
From our initial conditions, v(0) = 9.55 m/s, t = 0 , g = 9.8 m/s², γ = 9 kg/s , m = 15 kg. k = y/m. Substituting these values, we have
9.55 = 9.8 × 15/9 + c
= 16.33 + c
c = 9.55 -16.33 = -6.78.
So, v(t)= 16.33 - 6.78
. m/s = - 6.78
+ 16.33 m/s
b. Velocity of object at time t = 0.5
At t = 0.5, v = - 6.78
+ 16.33 m/s = 16.328 m/s ≅ 16.33 m/s