Answer:179.991
Step-by-step explanation:
Subtract us google or siri
Answer:
<h2>D) (12 × 8) + (12 × 5)</h2>
Step-by-step explanation:
The distributive property: <em>a(b + c) = ab + ac</em>
<em></em>
We have 12(8 + 5).
Use the distributive property:
12(8 + 5) = (12)(8) + (12)(5) = (12 × 8) + (12 × 5)
Answer:
A. q = 39
Step-by-step explanation:
Since the lines are parallel, their sides will be proportional,
So,
Taking their proportion
=> 
Cross Multiplying
q × 40 = 26 × 60
q = 
q = 39
Answer:
If n = 1000000, then
![P(h E [495000, 505000]) = \int\limits^{50500}_{495000} {\frac{2}{\sqrt{2000000\pi}} e^{\frac{-(k-500000)^2}{500000} }} \, dk](https://tex.z-dn.net/?f=P%28h%20E%20%5B495000%2C%20505000%5D%29%20%3D%20%5Cint%5Climits%5E%7B50500%7D_%7B495000%7D%20%7B%5Cfrac%7B2%7D%7B%5Csqrt%7B2000000%5Cpi%7D%7D%20e%5E%7B%5Cfrac%7B-%28k-500000%29%5E2%7D%7B500000%7D%20%7D%7D%20%5C%2C%20dk)
If n = 10400, then
![P(h E [495000, 505000]) = \int\limits^{50500}_{495000} {\frac{2}{\sqrt{2000000\pi}} e^{\frac{-(k-500000)^2}{500000} }} \, dk](https://tex.z-dn.net/?f=P%28h%20E%20%5B495000%2C%20505000%5D%29%20%3D%20%5Cint%5Climits%5E%7B50500%7D_%7B495000%7D%20%7B%5Cfrac%7B2%7D%7B%5Csqrt%7B2000000%5Cpi%7D%7D%20e%5E%7B%5Cfrac%7B-%28k-500000%29%5E2%7D%7B500000%7D%20%7D%7D%20%5C%2C%20dk)
If N = 102, then

Step-by-step explanation:
Since the coin is fair, then the probability that a filp is heads is 1/2. Given N tries, the amount of heads can be approximated with a Normal distribution with mean μ = N *1/2 = N/2 and standard deviation σ = √(N*1/2 * 1/2) = √N/ 2
The density function of that random variable is given by de following formula

If n = 1000000, then
![P(h E [495000, 505000]) = \int\limits^{50500}_{495000} {\frac{2}{\sqrt{2000000\pi}} e^{\frac{-(k-500000)^2}{500000} }} \, dk](https://tex.z-dn.net/?f=P%28h%20E%20%5B495000%2C%20505000%5D%29%20%3D%20%5Cint%5Climits%5E%7B50500%7D_%7B495000%7D%20%7B%5Cfrac%7B2%7D%7B%5Csqrt%7B2000000%5Cpi%7D%7D%20e%5E%7B%5Cfrac%7B-%28k-500000%29%5E2%7D%7B500000%7D%20%7D%7D%20%5C%2C%20dk)
If n = 10400, then
![P(h E [495000, 505000]) = \int\limits^{50500}_{495000} {\frac{2}{\sqrt{2000000\pi}} e^{\frac{-(k-500000)^2}{500000} }} \, dk](https://tex.z-dn.net/?f=P%28h%20E%20%5B495000%2C%20505000%5D%29%20%3D%20%5Cint%5Climits%5E%7B50500%7D_%7B495000%7D%20%7B%5Cfrac%7B2%7D%7B%5Csqrt%7B2000000%5Cpi%7D%7D%20e%5E%7B%5Cfrac%7B-%28k-500000%29%5E2%7D%7B500000%7D%20%7D%7D%20%5C%2C%20dk)
If N = 102, then
