The missing provided information is that Mr. Nicholson accepts a job that pays an annual salary of
$60,000. And he is given the option of choosing between two annual raises:
a) an annual raise of $3,500 or b) an annual raise of 5% of his current salary.
Then, with that information you have to answer the given questions.Which I am going to do step by step.
<span>
1) identify each of Mr. Nicholson’s earning opportunities as arithmetic or
geometric. For each opportunity, include the common difference or
ratio. In your final answer, use complete sentences to explain how you
identified each opportunity as arithmetic or geometric.
- An annual raise of fix $3500 means that every year the salary increase in a constant amount driving to this sequence:
60,000 + 3500 = 63,500;
63,500 + 3,500 = 67,000
67,000 + 3,500 = 70,500
70,500 + 3,500 = 74,000
74,000 + 3,500 = 77,500
...
Then you have a constant difference between two adjacent terms which means that this is an arithmethic progression.
- An annual raise of 5% of the current salary, means that the salary will increase by a constant factor of 1.05, driving to this sequence:
60,000 * 1.05 = 63,000
63,000 * 1.05 = 66,150
66,150 * 1.05 = 69,457.50
69,457.50 * 1.05 = 72,930.375
72,930.375 * 1.05 = 76,576.89
...
In this case, the increase is geometrical because you have that two adjacent terms differentiate by a constant factor, e.g.: 69,457.50 / 66,150 = 1.50.
2)Model each of Mr. Nicholson’s salary options with a recursive sequence
that includes his potential earnings for the first three years of
employment.
According to the first three terms of each sequence, can you conclude
that there is a significant difference in Mr. Nicholson’s potential
earnings with each increase option? Use complete sentences to explain
your conclusion.
Models
- Atrihmetic progression option
Annual salary the year n= Sn
Initial Salary = S1 = 60,000
difference, d = 3500
number of year: n
Model: S = S1 + (n-1)*d
S = 60,000 + (n-1)*3500
Potential earnings for first three years:
You can use the fomula for the sum of n terms in an arithmetic progression: [S1 + S3]*(n) / (2)
Sum = [60,000 + 67000] * 3 / 2 = 190,500
This is the same that [60,000 + 63,500 + 67,000] = 190,500.
- Geometric progression:
S1 = 60,000
r = 1.05
Sn = S1 * r^(n-1) = 60,000 - (1.05)^(n-1)
Potential earnings the first three years:
60,000 + 63,000 + 66,150 = 189,150
</span>
Now you got that there is a substantial difference in potential earnings with each option: the constant increase of $3500 (arithmetic progression) during three years results in a bigger earning for that time, because 5% of difference the second year is only 3000, and the third year 3150; both below $3500. This results in that the arithmetic progression is better for Mr. Nicholson during the first three years.
Answer:
Distance traveled = 162.5 miles
Step-by-step explanation:
Distance = speed * time
speed = 65
time = 2.5
Distance = 65* 2.5 = 162.5 miles
Distance traveled = 162.5 mile
Answer:
s+6
Step-by-step explanation:
You just add 2 and 4.
Answer:
El número de personas que consumen dos productos es 30.
Step-by-step explanation:
El primer paso para resolver el problema es realizar los gráficos de los eventos (agregaré como archivo adjunto el gráfico del ejercicio).
En el gráfico podemos ver 7 regiones :
A : Personas que consumen sólo albaricoque.
B : Personas que consumen sólo banana.
C : Personas que consumen sólo coco.
D : Personas que consumen sólo albaricoque y coco.
E : Personas que consumen las tres frutas (albaricoque, banana y coco).
F : Personas que consumen sólo banana y coco.
G : Personas que consumen sólo albaricoque y banana.
Ahora, debemos escribir las ecuaciones que nos brinda el ejercicio :
La encuesta se realizó a 120 personas y se sabe que todas las personas consumen un producto ⇒
(I)
''El número de personas que consumen sólo albaricoque y coco es la mitad de las que consumen sólo albaricoque'' ⇒
(II)
''El número de personas que consumen sólo banana es el doble de las personas que consumen sólo albaricoque y banana más sólo banana y coco'' ⇒
(III)
Finalmente : ''El número de personas que consumen sólo coco más los que consumen los tres productos es 30'' ⇒
(IV)
Finalmente obtenemos el siguiente sistema de ecuaciones :

El número de personas que consumen dos productos es :

Entonces, resolvemos escribiendo la primera ecuación conmutando los términos :
(V)
De (II) se obtiene :
(VI)
Usamos (VI), (III) y (IV) en (V) ⇒
⇒


Dividiendo esta última ecuación por ''3'' obtenemos :

Que es el número de personas que consumen dos productos.
Es muy conveniente seguir el desarrollo del ejercicio mirando el gráfico que adjunto.
Answer:
The correct answer is certain with probability equal to 1.
Step-by-step explanation:
Probability is a mathematical framework which helps us to analyze chance of the outcome in a particular experiment. The value of probability is given by the ratio of the possible outcomes favorable to a certain experiment to the total outcomes.
We say an event is certain when the probability is 1 and the probability is zero when the event is uncertain.
Here the experiment is picking a blue card from a bag containing all blue cards.
Possible outcomes are all the cards colored blue in the bag.
Total outcomes are also all the blue cards in the bag.
∴ The value of probability is 1 as the event is certain because if we pick a card from the bag containing only blue cards, it would certainly give us a blue card.