1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cupoosta [38]
3 years ago
9

Find three different ways to write the equation that represents the line in the plane that passes through points

Mathematics
1 answer:
Zinaida [17]3 years ago
5 0

Answer:

y - 2 = -3(x - 1).

y = -3x + 5.

3x + y = 5.

Step-by-step explanation:

The slope of the line is (-1-2) / (2 - 1)

= -3.

Using the point slope form of the equation of a straight line:

y - 2 = -3(x - 1) This is one way to write it.

Simplifying the above:

y = -3x + 3 + 2

y = -3x + 5. This is another way called the slope-intercept form.

Now we convert this to the standard form:

y = -3x + 5

y + 3x = 5

3x + y = 5.

You might be interested in
What number should be added to 51 to get a sum -21
Anastaziya [24]
We can write out a formula in order to solve this. Since sum represents addition, if x represents the unknown number, we can write the formula: x+51=-21. Then, to solve for x, you would subtract 51 from both sides to get x=-72 which is the final answer. 
3 0
3 years ago
Read 2 more answers
What is the area of this triangle?
mafiozo [28]

Answer:

I believe the answer is 24

5 0
3 years ago
Read 2 more answers
Is 1/4 more than 7/3
IrinaVladis [17]

Answer:

No

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
If
baherus [9]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: cos 330 = \frac{\sqrt3}{2}

Use the Double-Angle Identity: cos 2A = 2 cos² A - 1

\text{Scratchwork:}\quad \bigg(\dfrac{\sqrt3 + 2}{2\sqrt2}\bigg)^2 = \dfrac{2\sqrt3 + 4}{8}

Proof LHS → RHS:

LHS                          cos 165

Double-Angle:        cos (2 · 165) = 2 cos² 165 - 1

                             ⇒ cos 330 = 2 cos² 165 - 1

                             ⇒ 2 cos² 165  = cos 330 + 1

Given:                        2 \cos^2 165  = \dfrac{\sqrt3}{2} + 1

                              \rightarrow 2 \cos^2 165  = \dfrac{\sqrt3}{2} + \dfrac{2}{2}

Divide by 2:               \cos^2 165  = \dfrac{\sqrt3+2}{4}

                             \rightarrow \cos^2 165  = \bigg(\dfrac{2}{2}\bigg)\dfrac{\sqrt3+2}{4}

                             \rightarrow \cos^2 165  = \dfrac{2\sqrt3+4}{8}

Square root:             \sqrt{\cos^2 165}  = \sqrt{\dfrac{4+2\sqrt3}{8}}

Scratchwork:            \cos^2 165  = \bigg(\dfrac{\sqrt3+1}{2\sqrt2}\bigg)^2

                             \rightarrow \cos 165  = \pm \dfrac{\sqrt3+1}{2\sqrt2}

             Since cos 165 is in the 2nd Quadrant, the sign is NEGATIVE

                             \rightarrow \cos 165  = - \dfrac{\sqrt3+1}{2\sqrt2}

LHS = RHS \checkmark

4 0
4 years ago
Round to the nearest tenth if necessary.
Andrei [34K]

Answer:

B) 25

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)

<u>Algebra II</u>

  • Distance Formula: \displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

Point (-1, -8)

Point (-4, -4)

<u>Step 2: Find distance </u><em><u>d</u></em>

Simply plug in the 2 coordinates into the distance formula to find distance <em>d</em>

  1. Substitute in points [Distance Formula]:                                                         \displaystyle d = \sqrt{(-4--1)^2+(-4--8)^2}
  2. [√Radical] (Parenthesis) Subtract:                                                                   \displaystyle d = \sqrt{(-3)^2+(4)^2}
  3. [√Radical] Evaluate exponents:                                                                       \displaystyle d = \sqrt{9+16}
  4. [√Radical] Add:                                                                                                 \displaystyle d = \sqrt{25}
  5. [√Radical] Evaluate:                                                                                           \displaystyle d = 5
4 0
3 years ago
Other questions:
  • Write a flow chart for the following
    9·1 answer
  • If h(x) = | 1-7x | what is 23- h(-9)<br> the "|" means absolute value
    5·2 answers
  • Parallelogram EFGH has vertices at E(1,3), F(0,2), G(4,0), and H(5,1). How many units is the perimeter of parallelogram EFGH?
    11·2 answers
  • How do we use the question as the example
    12·1 answer
  • What is the common ratio between successive terms in the sequence?<br> 2, 4,8,-16, 32, 34,
    8·1 answer
  • How to do this guys im stuck on this one
    5·1 answer
  • Malik is making coffee using a recipe that calls for 2 cups of milk for every 5 cups of coffee
    8·1 answer
  • Can someone help me with this question
    9·1 answer
  • Please help me with both of these!!
    8·1 answer
  • PLEASE ANSWERING THIS QUESTION!!!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!