Answer:
The height of the seat at point B above the ground is approximately 218.5 feet
Step-by-step explanation:
The given parameters are;
The radius of the Ferris wheel, r = 125 feet
The angle between each seat, θ = 36°
The height of the Ferris wheel above the ground = 20 feet
Therefore, we have;
The height of the midline, D = The height of the Ferris wheel above the ground + The radius of the Ferris wheel
∴ The height of the midline = 20 feet + 125 feet = 145 feet
The height of the seat at point B above the ground, h = r × sin(θ) + D
By substitution, we have;
h = 125 × sin(36°) + 145 ≈ 218.5 (The answer is rounded to the nearest tenth)
The height of the seat at point B above the ground, h ≈ 218.5 feet.
Natural number
that is 1,2,3,4,5,6...
Answer: The answer is 
Step-by-step explanation: Given in the question that ΔAM is a right-angled triangle, where ∠C = 90°, CP ⊥ AM, AC : CM = 3 : 4 and MP - AP = 1. We are to find AM.
Let, AC = 3x and CM = 4x.
In the right-angled triangle ACM, we have

Now,

Now, since CP ⊥ AM, so ΔACP and ΔMCP are both right-angled triangles.
So,

Comparing equations (A) and (B), we have

Thus,

Answer:
Y=2x-7
Step-by-step explanation:
-10 (13) - 10 (16k) - 2-130 - 10 (16k) - 2-130 - (160k) - 2- 160k - 132