Answer:
Each organ system performs specific functions for the body, and each organ system is typically studied independently. However, the organ systems also work together to help the body maintain homeostasis.
For example, the cardiovascular, urinary, and lymphatic systems all help the body control water balance. The cardiovascular and lymphatic systems transport fluids throughout the body and help sense both solute and water levels and regulate pressure. If the water level gets too high, the urinary system produces more dilute urine (urine with a higher water content) to help eliminate the excess water. If the water level gets too low, more concentrated urine is produced so that water is conserved. The digestive system also plays a role with variable water absorption. Water can be lost through the integumentary and respiratory systems, but that loss is not directly involved in maintaining body fluids and is usually associated with other homeostatic mechanisms.
Similarly, the cardiovascular, integumentary, respiratory, and muscular systems work together to help the body maintain a stable internal temperature. If body temperature rises, blood vessels in the skin dilate, allowing more blood to flow near the skin’s surface. This allows heat to dissipate through the skin and into the surrounding air. The skin may also produce sweat if the body gets too hot; when the sweat evaporates, it helps to cool the body. Rapid breathing can also help the body eliminate excess heat. Together, these responses to increased body temperature explain why you sweat, pant, and become red in the face when you exercise hard. (Heavy breathing during exercise is also one way the body gets more oxygen to your muscles, and gets rid of the extra carbon dioxide produced by the muscles.)
Answer:
They release chemical messengers to communicate with cells they may or may not be in direct contact with.
Explanation:
Unicellular organisms such as bacteria or yeast, 'talk' to each other through the release of chemicals. In bacteria, this is known as quorum sensing which allows them to determine the surrounding bacterial population density. In yeast, one of the more popular pathways is known as the mating factor pathway, which allow the organisms to find mates. Whereas, in multicellular organisms (such as humans), this chemical release allows for cell-cell co-ordination which keeps the system functioning correctly.
Mesoderm
Mesoderm is the primary germ layer that is responsible for producing both blood and phagocytic brain glial cells.
The mesoderm is the middle of the three germ layers that appears in the third week of embryonic development. The mesoderm is responsible for the formation of various body structures such as epithelia of blood vessels, blood, muscle, bone, phagocytic brain glial cells, lymphatic vessels, adrenal cortex, notochord, and bone marrow.
Answer:
invertebrates. animal's without backbone.
verterbrates- animals with backbone
Natural disasters because they are all natural