Answer:
1.75 in
Step-by-step explanation:
kyo na bhala dyan sa sgot
Answer:
The equation that represents the population after T years is
![P_{t} = 7,632,819,325 [1 +\frac{1.09}{100} ]^{T}](https://tex.z-dn.net/?f=P_%7Bt%7D%20%20%3D%207%2C632%2C819%2C325%20%5B1%20%2B%5Cfrac%7B1.09%7D%7B100%7D%20%5D%5E%7BT%7D)
Step-by-step explanation:
Population in the year 2018 ( P )= 7,632,819,325
Rate of increase R = 1.09 %
The population after T years is given by the formula
-------- (1)
Where P = population in 2018
R = rate of increase
T = time period
Put the values of P & R in above equation we get
![P_{t} = 7,632,819,325 [1 +\frac{1.09}{100} ]^{T}](https://tex.z-dn.net/?f=P_%7Bt%7D%20%20%3D%207%2C632%2C819%2C325%20%5B1%20%2B%5Cfrac%7B1.09%7D%7B100%7D%20%5D%5E%7BT%7D)
This is the equation that represents the population after T years.
Answer:
1,000 ft³
Step-by-step explanation:
The volume is given by ...
V = Bh
where B is the area of the base, and h is the height. For the given dimensions, the volume is ...
V = (200 ft²)(5 ft) = 1000 ft³
Answer:
graph{3x+5 [-10, 10, -5, 5]}
x
intercept:
x
=
−
5
3
y
intercept:
y
=
5
Explanation:
For a linear graph, the quickest way to sketch the function is to determine the
x
and
y
intercepts and draw a line between the two: this line is our graph.
Let's calculate the
y
intercept first:
With any function,
y
intercepts where
x
=
0
.
Therefore, substituting
x
=
0
into the equation, we get:
y
=
3
⋅
0
+
5
y
=
5
Therefore, the
y
intercept cuts through the point (0,5)
Let's calculate the
x
intercept next:
Recall that with any function:
y
intercepts where
x
=
0
.
The opposite is also true: with any function
x
intercepts where
y
=
0
.
If we substitute
y
=
0
, we get:
0
=
3
x
+
5
Let's now rearrange and solve for
x
to calculate the
x
intercept.
−
5
=
3
x
−
5
3
=
x
Therefore, the
x
intercept cuts through the point
(
−
5
3
,
0
)
.
Now we have both the
x
and
y
intercepts, all we have to do is essentially plot both intercepts on a set of axis and draw a line between them
The graph of the function
y
=
3
x
+
5
:
graph{3x+5 [-10, 10, -5, 5]}
First subtract the weight the dog weighs now to the weight he was:
48.9
- 29.7
------------
19.2
Then take the number you got which is the weight the dog gain in total, and divide it by the months the dog gained weight to get the average weight gained each month:
19.2/8 = 2.4
The average weight gain each month was 2.4 pounds.
Hope this helped you!