Part (a)
Locate x = -1 on the x axis. Draw a vertical line through this x value until you reach the f(x) curve. Then move horizontally until you reach the y axis. You should arrive at y = 4. Check out the diagram below to see what I mean.
Since f(-1) = 4, this means we can then say
g( f(-1) ) = g( 4 ) = 4
To evaluate g(4), we'll follow the same idea as what we did with f(x). However, we'll start at x = 4 and draw a vertical line until we reach the g(x) curve this time.
<h3>
Answer: 4</h3>
==========================================================
Part (b)
We use the same idea as part (a)
f(-2) = 5
g( f(-2) ) = g(5) = 6
<h3>
Answer: 6</h3>
==========================================================
Part (c)
Same idea as the last two parts. We start on the inside and work toward the outside. Keep in mind that g(x) is now the inner function for this part and for part (d) as well.
g(1) = -2
f( g(1) ) = f(-2) = 5
<h3>
Answer: 5</h3>
==========================================================
Part (d)
Same idea as part (c)
g(2) = 0
f( g(2) ) = f( 0 ) = 3
<h3>
Answer: 3</h3>
Given J(1, 1), K(3, 1), L(3, -4), and M(1, -4) and that J'(-1, 5), K'(1, 5), L'(1, 0), and M'(-1, 0). What is the rule that tran
anastassius [24]
(x; y) -> (x - 2; y + 4)
J(1; 1) ⇒ J'(1 - 2; 1 + 4) = (-1; 5)
K(3; 1) ⇒ K'(3 - 2; 1 + 4) = (1; 5)
L(3;-4) ⇒ L'(3 - 2; -4 + 4) = (1; 0)
M(1;-4) ⇒ M'(1 - 2;-4 + 4) = (-1; 0)
Answer: C
Explanation:i got it right on my test
Answer:
i) Equation can have exactly 2 zeroes.
ii) Both the zeroes will be real and distinctive.
Step-by-step explanation:
is the given equation.
It is of the form of quadratic equation
and highest degree of the polynomial is 2.
Now, FUNDAMENTAL THEOREM OF ALGEBRA
If P(x) is a polynomial of degree n ≥ 1, then P(x) = 0 has exactly n roots, including multiple and complex roots.
So, the equation can have exact 2 zeroes (roots).
Also, find discriminant D = 
⇒ D = 37
Here, since D > 0, So both the roots will be real and distinctive.