keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the equation above
![x + y =3\implies y=-x+3\implies y=\stackrel{\stackrel{m}{\downarrow }}{-1}x+3 \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=x%20%2B%20y%20%3D3%5Cimplies%20y%3D-x%2B3%5Cimplies%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-1%7Dx%2B3%20%5Cimpliedby%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

The answer is the option d, which is: d) 
The explanation for this problem is shown below:
1. Smplify the denominator and rewrite the numerator in this form:

2. Multiply the denominator and the numerator by the conjugated
and simplify the expression, as following:

3. As you can see, you obtain the expression shown in the option mentioned above.
Answer:
y is 60⁰
because all sides are equal
The point-slope form:

We have the points (-1, 6) and (3, -2). Substitute:

<h3>Answer:</h3><h3>y - 6 = -2(x + 1) <em>point-slope form</em></h3><h3>y = -2x + 4 <em>slope-intercept form</em></h3><h3>2x + y = 4 <em>standard form</em></h3>