Answer: oh gosh, rlly bad at math... let me do the maths quick, and will edit my answer to the correct answer i dont have enough time, -7a+11
Step-by-step explanation:
Step-by-step explanation:It says:
There are 3 strawberry yoghurts, 2 peach yoghurts and 4 cherry yoghurts in a fridge.
Kate takes a yoghurt at random from the fridge.
She eats the yoghurt.
She then takes a second yoghurt at random from the fridge.
Work out the probability that both yoghurts were the same flavour.
Answer:
-25 + 75 = 50
Step-by-step explanation:
Since we don't know the value of the bar, we will call it x.
-25 + x = 50
Add 25 to both sides to find the value of x.
x = 75
You can also double check this answer by doing simple math.
-25 + 75 = 50
Answer:



Step-by-step explanation:
<u>Optimizing With Derivatives
</u>
The procedure to optimize a function (find its maximum or minimum) consists in
:
- Produce a function which depends on only one variable
- Compute the first derivative and set it equal to 0
- Find the values for the variable, called critical points
- Compute the second derivative
- Evaluate the second derivative in the critical points. If it results positive, the critical point is a minimum, if it's negative, the critical point is a maximum
We know a cylinder has a volume of 4
. The volume of a cylinder is given by

Equating it to 4

Let's solve for h

A cylinder with an open-top has only one circle as the shape of the lid and has a lateral area computed as a rectangle of height h and base equal to the length of a circle. Thus, the total area of the material to make the cylinder is

Replacing the formula of h

Simplifying

We have the function of the area in terms of one variable. Now we compute the first derivative and equal it to zero

Rearranging

Solving for r

![\displaystyle r=\sqrt[3]{\frac{4}{\pi }}\approx 1.084\ feet](https://tex.z-dn.net/?f=%5Cdisplaystyle%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%7D%7B%5Cpi%20%7D%7D%5Capprox%201.084%5C%20feet)
Computing h

We can see the height and the radius are of the same size. We check if the critical point is a maximum or a minimum by computing the second derivative

We can see it will be always positive regardless of the value of r (assumed positive too), so the critical point is a minimum.
The minimum area is


Answer:


Step-by-step explanation:
Let the quotient be represented by 'Q'.
Given:
The difference of a number 'y' and 16 is 
Quotient is the answer that we get on dividing two terms. Here, the first term is 40 and the second term is
. So, we divide both these terms to get an expression for 'Q'.
The quotient of 40 and
is given as:

Now, we need to find the quotient when
. Plug in 20 for 'y' in the above expression and evaluate the quotient 'Q'. This gives,

Therefore, the quotient is 10, when the value of 'y' is 20.