Answer:
Step-by-step explanation:
A right angle triangle is formed.
The length of the guy wire represents the hypotenuse of the right angle triangle.
The height of the antenna represents the opposite side of the right angle triangle.
The distance, h from base of the antenna to the point on the ground to which the antenna is attached represents the adjacent side of the triangle.
To determine h, we would apply Pythagoras theorem which is expressed as
Hypotenuse² = opposite side² + adjacent side²
Therefore,
41² = 32.8² + h²
1681 = 1075.84 + h²
h² = 1681 - 1075.84 = 605.16
h = √605.16
h = 24.6 m
To determine the angle θ that the wire makes with the ground, we would apply the the cosine trigonometric ratio.
Cos θ = adjacent side/hypotenuse. Therefore,
Cos θ = 24.6/41 = 0.6
θ = Cos^-1(0.6)
θ = 53.1°
All good. Fill in t with 10 and solve for the expression g(t). 10 = t so it fill in
Answer:
(4.25, - 1.75)
Step-by-step explanation:
Under a reflection in the y- axis
a point (x, y ) → (- x, y ), thus
(- 4.25, - 1.75 ) → (4.25, - 1.75 ) ← original point

- subtract the 12 from both sides so that it becomes the last constant term in the quadratic equation which should now equal 0.
- take the 4x
- half the coefficient of 4 (2)
- square it (4)
- add it to the equation (+4)
- subtract it from the equation (-4)
- factorise the square (x+2)^2 expands to (x^2 + 4x + 2) as {a+b}^2={a^2 + ab + ba + b^2}
- now the equation is in turning point form.
- to find x, add 16 and square root 16 and (x+2)
- subtract 2 from positive or negative 4 (as -4^2 and 4^2 both equal 16).
- This should give you two values for x, -6 and 2.
I really hope that this helped :)