1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
salantis [7]
3 years ago
8

The 5 positive integers a, a, a, b, and c have an average of a. What is the value of (b+c)/2?

Mathematics
1 answer:
makkiz [27]3 years ago
3 0
We are given that a+a+a+b+c=5a=a+a+a+a+a
subtract a+a+a from both sides, then
b+c=a+a
divide by two,
(b+c)/2=(a+a)/2=a
You might be interested in
C + 25 - 19 = 100 uggghh
larisa86 [58]

Answer:

c=6

Step-by-step explanation:

c+25-19=100

isolate variable...

c+25-19+19=100+19

c+25=119

c+25-25=119-25

c=6

6 0
2 years ago
Read 2 more answers
Which equation has a graph that is a parabola with a vertex at (–2, 0)?
RideAnS [48]

Comparing to the standard equation, the parabola with a vertex at (-2,0) is given by:

y = (x + 2)²

<h3>What is the equation of a parabola given it’s vertex?</h3>

The equation of a quadratic function, of vertex (h,k), is given by:

y = a(x - h)² + k

In which a is the leading coefficient.

In this problem, we have that h = -2 and k = 0, and all the options have leading coefficient a = 1, hence the equation is:

y = (x + 2)²

More can be learned about the equation of a parabola at brainly.com/question/17987697

4 0
3 years ago
I have 3 Algebra questions can anyone help?
Kisachek [45]

1.  9x^2+4x-8

2. 6x^3+16x^2+3x+8

3. 5x^4-27x^3-14x^2+24x

4 0
3 years ago
Calculate the circumference of the following circles. Give your answers to 1 decimal place.​
prisoha [69]

Answer:

a) 31.4 cm b) 22.0 cm c) 9.4 mm d) 18.8 m e) 1.6 m f) 28.3 cm g) 78.5 cm h) 9.7 m

Step-by-step explanation:

All it really is multiply the diameter which is the straight line through the center of the circle

C = d × \pi

8 0
3 years ago
Read 2 more answers
For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso
PIT_PIT [208]

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

6 0
2 years ago
Other questions:
  • What is wrong with this histogram?
    7·1 answer
  • Volume8cm what is side lengths
    13·1 answer
  • -5(x - 1) greater than -40
    7·1 answer
  • I need help please! Thank you.
    15·1 answer
  • ILL GIVE BRAINLIEST!
    9·1 answer
  • Bridgette bought 1 pack of white T-shirts and 5 packs of blue T-shirts for her basketball team. The white T-shirts come in packs
    11·2 answers
  • Through(0,4), parallel to -2x+4y=7
    6·1 answer
  • Write an equation for the trend line shown (please help thanks)
    13·1 answer
  • I have no idea what the answer is or how to get it.
    15·1 answer
  • Avery got 18 questions correct out of 30 on the last quiz. Write the score in decimal form.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!