1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
4 years ago
12

Need help how to do this !!

Mathematics
1 answer:
otez555 [7]4 years ago
8 0
What is the question? (free points for me)
You might be interested in
In a right triangle, the acute angles measure 2x+50 and 3x degrees
xenn [34]
2x+50 + 3x= 90 degrees
5x +50 = 90
5x =40
x=8

Angle1= 2(8) +50= 66
Angle2= 3(8)=24

66+24+90= 180
6 0
3 years ago
Read 2 more answers
A triangle has sides with lengths of 13 inches, 16 inches, and 18 inches. Is it a right triangle?
Rasek [7]
Not entirely, it could be an isoceles triangle (a triangle which all sides are different lengths) but there is still a possibility.
3 0
4 years ago
10
Mekhanik [1.2K]

Answer:

ithink 8470 the answer

Step-by-step explanation:

sana nakatulong

3 0
3 years ago
Read 2 more answers
How do you increase £480 by 7.5%
elena55 [62]
\sf 480+ \frac{7,5*48\not0}{10\not0}= 480+ \frac{36\not0}{1\not0}=480+36=\boxed{\sf 516~\£}
4 0
3 years ago
I need help.. i really want to go sleep.. thank you so much...
Effectus [21]

Answer:

1) True 2) False

Step-by-step explanation:

1) Given  \sum\limits_{k=0}^8\frac{1}{k+3}=\sum\limits_{i=3}^{11}\frac{1}{i}

To verify that the above equality is true or false:

Now find \sum\limits_{k=0}^8\frac{1}{k+3}

Expanding the summation we get

\sum\limits_{k=0}^8\frac{1}{k+3}=\frac{1}{0+3}+\frac{1}{1+3}+\frac{1}{2+3}+\frac{1}{3+3}+\frac{1}{4+3}+\frac{1}{5+3}+\frac{1}{6+3}+\frac{1}{7+3}+\frac{1}{8+3} \sum\limits_{k=0}^8\frac{1}{k+3}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}

Now find \sum\limits_{i=3}^{11}\frac{1}{i}

Expanding the summation we get

\sum\limits_{i=3}^{11}\frac{1}{i}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}

 Comparing the two series  we get,

\sum\limits_{k=0}^8\frac{1}{k+3}=\sum\limits_{i=3}^{11}\frac{1}{i} so the given equality is true.

2) Given \sum\limits_{k=0}^4\frac{3k+3}{k+6}=\sum\limits_{i=1}^3\frac{3i}{i+5}

Verify the above equality is true or false

Now find \sum\limits_{k=0}^4\frac{3k+3}{k+6}

Expanding the summation we get

\sum\limits_{k=0}^4\frac{3k+3}{k+6}=\frac{3(0)+3}{0+6}+\frac{3(1)+3}{1+6}+\frac{3(2)+3}{2+6}+\frac{3(3)+4}{3+6}+\frac{3(4)+3}{4+6}

\sum\limits_{k=0}^4\frac{3k+3}{k+6}=\frac{3}{6}+\frac{6}{7}+\frac{9}{8}+\frac{12}{8}+\frac{15}{10}

now find \sum\limits_{i=1}^3\frac{3i}{i+5}

Expanding the summation we get

\sum\limits_{i=1}^3\frac{3i}{i+5}=\frac{3(0)}{0+5}+\frac{3(1)}{1+5}+\frac{3(2)}{2+5}+\frac{3(3)}{3+5}

\sum\limits_{i=1}^3\frac{3i}{i+5}=\frac{3}{6}+\frac{6}{7}+\frac{9}{8}

Comparing the series we get that the given equality is false.

ie, \sum\limits_{k=0}^4\frac{3k+3}{k+6}\neq\sum\limits_{i=1}^3\frac{3i}{i+5}

6 0
4 years ago
Other questions:
  • What is 12 3/4 - 11 7/8?
    8·1 answer
  • Solve the equation x^16-2x^15-x^14+4x^13-x^12-2x^11+x^10=0 in the real number system
    11·1 answer
  • A student identification card consists
    12·1 answer
  • I need help help please
    6·1 answer
  • On Friday night 165 people saw the dinosaur exhibit at the natural history museum. This amount represents 22% of the people who
    5·1 answer
  • A wall is to be painted. A small rectangle in the middle of the wall will remain white to use for a projector. Find the area of
    8·1 answer
  • 13. Find the vertex of f(x)=x2 -6x +8 .
    6·1 answer
  • 7th grade math help me please :)
    15·2 answers
  • A package of twelve eggs cost $5 at this price, how much does each individual egg cost?
    8·1 answer
  • See your levels
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!