Answer:
![41\text{ [units squared]}](https://tex.z-dn.net/?f=41%5Ctext%7B%20%5Bunits%20squared%5D%7D)
Step-by-step explanation:
The octagon is irregular, meaning not all sides have equal length. However, we can break it up into other shapes to find the area.
The octagon shown in the figure is a composite figure as it's composed of other shapes. In the octagon, let's break it up into:
- 4 triangles (corners)
- 3 rectangles (one in the middle, two on top after you remove triangles)
<u>Formulas</u>:
- Area of rectangle with length
and width
:
- Area of triangle with base
and height
:
<u>Area of triangles</u>:
All four triangles we broke the octagon into are congruent. Each has a base of 2 and a height of 2.
Thus, the total area of one is 
The area of all four is then
units squared.
<u>Area of rectangles</u>:
The two smaller rectangles are also congruent. Each has a length of 3 and a width of 2. Therefore, each of them have an area of
units squared, and the both of them have a total area of
units squared.
The last rectangle has a width of 7 and a height of 3 for a total area of
units squared.
Therefore, the area of the entire octagon is ![8+12+21=\boxed{41\text{ [units squared]}}](https://tex.z-dn.net/?f=8%2B12%2B21%3D%5Cboxed%7B41%5Ctext%7B%20%5Bunits%20squared%5D%7D%7D)
Answer:
The area is 30
Step-by-step explanation:
because its length x width x height
The simplified answer would be 14x+17y-11
Answer:
Step-by-step explanation:
Answer:
(-6,6), (0,12), (4,8)
Step-by-step explanation:
To dilate an object, we need to multiply the x and y values by the given scale factor.
In this case the scale factor is 2 --> 2(x, y)
Before-> After dilation
2(-3,3) = (-6,6)
2(0,6) = (0,12)
2(2,4) = (4,8)
Please leave a 'thanks' if this helps!