Answer:
x=-1/4
Step-by-step explanation:
this might be wrong
Answer:
it should be option 2 and 4
Step-by-step explanation:
The correct answer is "525613"
The corresponding homogeneous ODE has characteristic equation
with roots at
, thus admitting the characteristic solution

For the particular solution, assume one of the form



Substituting into the ODE gives



Then the general solution to this ODE is



Assume a solution of the form



Substituting into the ODE gives



so the solution is



Assume a solution of the form


Substituting into the ODE gives



so the solution is

<h3>
The dimensions of the given rectangular box are:</h3><h3>
L = 15.874 cm , B = 15.874 cm , H = 7.8937 cm</h3>
Step-by-step explanation:
Let us assume that the dimension of the square base = S x S
Let us assume the height of the rectangular base = H
So, the total area of the open rectangular box
= Area of the base + 4 x ( Area of the adjacent faces)
= S x S + 4 ( S x H) = S² + 4 SH ..... (1)
Also, Area of the box = S x S x H = S²H
⇒ S²H = 2000

Substituting the value of H in (1), we get:

Now, to minimize the area put :

Putting the value of S = 15.874 cm in the value of H , we get:

Hence, the dimensions of the given rectangular box are:
L = 15.874 cm
B = 15.874 cm
H = 7.8937 cm