Answer:
10^x=1/100
10^x=10^-10
x=-10
Step-by-step explanation:
Answer:
Probability that component 4 works given that the system is functioning = 0.434 .
Step-by-step explanation:
We are given that a parallel system functions whenever at least one of its components works.
There are parallel system of 5 components and each component works independently with probability 0.4 .
Let <em>A = Probability of component 4 working properly, P(A) = 0.4 .</em>
<em>Also let S = Probability that system is functioning for whole 5 components, P(S)</em>
Now, the conditional probability that component 4 works given that the system is functioning is given by P(A/S) ;
P(A/S) = {Means P(component 4 working and system also working)
divided by P(system is functioning)}
P(A/S) = {In numerator it is P(component 4 working) and in
denominator it is P(system working) = 1 - P(system is not working)}
Since we know that P(system not working) means that none of the components is working in system and it is given with the probability of 0.6 and since there are total of 5 components so P(system working) = 1 -
.
Hence, P(A/S) =
= 0.434.
Answer:
400000000 dollar
Step-by-step explanation:
because why not
It is neither.
To be even, f(x) must equal f(-x).
If you substitute -x for x, you'd get
y = (-x)^2 - 2(-x) -8
y = x^2 +2x -8
This is not the same as the original, so this is not even.
To be odd, f(x) must equal -f(-x).
If you take the -x substitution from the last step and then multiply it by -1, you'd have:
y = -1 (x^2 +2x -8)
y = -x^2 -2x +8
This is not the same as the original either.
The function is neither even nor odd.
104 because 10% of 80 is 8 years meaning 8+8+8=24 add 24 to 80 and ur answer is 104