1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stiv31 [10]
3 years ago
12

How many posible solutions for x-3y=-3 and -2x+6y=12

Mathematics
1 answer:
Alexus [3.1K]3 years ago
7 0

Answer:

there are no solutions

Step-by-step explanation:

x-3y=-3

-2x+6y=12

multiply the first equation by 2

2( x-3y)=-3*2

2x-6y = -6

add the 2 equations together


2x-6y = -6

-2x+6y=12

-------------------

0 = -6

this is not true

so there are no solutions

You might be interested in
NEED ANSWER ASAP!!!!
lesya692 [45]

Answer:

1st option

Step-by-step explanation:

To find the difference of the given matrices, we just need to subtract the corresponding elements of the two matrices as shown below:

\left[\begin{array}{cc}-4&8\\3&12\end{array}\right] -\left[\begin{array}{cc}2&1\\-14&15\end{array}\right] \\\\ \\ =\left[\begin{array}{cc}-4-2&8-1\\3-(-14)&12-15\end{array}\right]\\\\ \\ =\left[\begin{array}{cc}-6&7\\17&-3\end{array}\right]

Thus, 1st option gives the correct answer

7 0
3 years ago
Read 2 more answers
Please help! just tell me the letter answer please :(
Sergio039 [100]

Answer: B. 5

Hope this helps! :)

7 0
3 years ago
Need help on 4-7 plz
anastassius [24]
4. 54 + 63 + 54=171
5. 3+3+75=81
6. 20+68=89
7. 120+180=300 x 1.48=$444
7 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Csqrt%2018-%20%5Csqrt%202" id="TexFormula1" title="\sqrt 18- \sqrt 2" alt="\sqrt 18- \sqrt 2
zimovet [89]
The answer is 2√2

√18 - √2
3 √2 - √2 = 2√2
4 0
2 years ago
Read 2 more answers
Write an equation for an ellipse centered at the origin, which has foci at (0,\pm\sqrt{63})(0,± 63 ​ )left parenthesis, 0, comma
steposvetlana [31]

Answer:

\frac{x^{2} }{4312 } + \frac{y^{2} }{8281 }

Step-by-step explanation:

Since the foci are at(0,±c) = (0,±63) and vertices (0,±a) = (0,±91), the major axis is the y- axis. So, we have the equation in the form (with center at the origin) \frac{x^{2} }{b^{2} } + \frac{y^{2} }{a^{2} }.

We find the co-vertices b from b = ±√(a² - c²) where a = 91 and c = 63

b = ±√(a² - c²)

= ±√(91² - 63²)

= ±√(8281 - 3969)

= ±√4312

= ±14√22

So the equation is

\frac{x^{2} }{(14\sqrt{22}) ^{2} } + \frac{y^{2} }{91^{2} } = \frac{x^{2} }{4312 } + \frac{y^{2} }{8281 }

8 0
3 years ago
Other questions:
  • Solve the inequality. 4x+6&lt;3x-5 A)x&lt;1 B) x&lt;11 C) x&lt;-1 D)x&lt;-11
    8·1 answer
  • A circle has a radius of 5 ft, and an arc of length 7 ft is made by the intersection of the circle with a central angle. Which e
    6·2 answers
  • Highest common factor of 92 and 42
    7·2 answers
  • Graph the piecewise-defined function.
    12·1 answer
  • 2m-5=17 I need an step by step explanation
    13·2 answers
  • Solve for v: v-6+=-9+3v-6-4
    11·1 answer
  • Please help no links with c and d please
    13·2 answers
  • Can someone please help me with this???
    15·1 answer
  • Find the surface area of a cylinder with the height of 10 inches and a base diameter of 6 in ​
    15·1 answer
  • Help??<br><br><br><br> (Ignore the answer choice I selected did that on accident)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!