It's the side that has as endpoints points S and A.
Answer: B. side SA.
Answer:
- see below for a drawing
- the area of one of the trapezoids is 20 units²
Step-by-step explanation:
No direction or other information about the desired parallelogram is given here, so we drew one arbitrarily. Likewise for the segment cutting it in half. It is convenient to have the bases of the trapezoids be the sides of the parallelogram that are 5 units apart.
The area of one trapezoid is ...
A = (1/2)(b1 +b2)h = (1/2)(3+5)·5 = 20 . . . . square units
The sum of the trapezoid base lengths is necessarily the length of the base of the parallelogram, so the area of the trapezoid is necessarily 1/2 the area of the parallelogram. (The area is necessarily half the area of the parallelogram also because the problem has us divide the parallelogram into two identical parts.)
Answer:
it would be in the fourth quadrant, directly underneath where it is now. the base would be c and d
Answer:
6.91 times 6.91 equals 47.7481
47.7481 times π equals 150.005080183
to the second digit this is
150.01