Answer:
tan²x + 1 = sec²x is identity
Step-by-step explanation:
* Lets explain how to find this identity
∵ sin²x + cos²x = 1 ⇒ identity
- Divide both sides by cos²x
∵ sin x ÷ cos x = tan x
∴ sin²x ÷ cos²x = tan²x
- Lets find the second term
∵ cos²x ÷ cos²x = 1
- Remember that the inverse of cos x is sec x
∵ sec x = 1/cos x
∴ sec²x = 1/cos²x
- Lets write the equation
∴ tan²x + 1 = 1/cos²x
∵ 1/cos²x = sec²x
∴ than²x + 1 = sec²x
- So we use the first identity sin²x + cos²x = 1 to prove that
tan²x + 1 = sec²x
∴ tan²x + 1 = sec²x is identity
Answer:
The solutions will contain an infinite amount of negative numbers.
I believe the answer is A.
Answer:
No, the following expression is not a difference of squares. Binomial can not be factored as the difference of two perfect squares. 3 is not a square.
Step-by-step explanation:
Factor
15x^2 - 25
(15x)^2(-5)^5
Divide by 3 and factor
5(3x^2-5)
"Theory:
A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression."
I put a picture to help u understand.
Answer:
Phly Daily
Step-by-step explanation:
because he is bomb. also maybe typical gamer