We have that
case <span>A)
(x – 2)(x + 2)(x</span>²<span> + 8)(x4 + 8)
(x</span>²-4)(x² + 8)(x4 + 8)
case <span>B)
(x – 2)(x – 2)(x</span>²<span> + 4)(x4 + 16)
(x-2)</span>²(x² + 4)(x4 + 16)
case <span>C)
(x – 2)(x + 2)(x</span>²<span> + 4)(x4 + 16)
(x</span>²-4)(x² + 4)(x4 + 16)
(x4 -16)(x4 + 16)
(x8-256)
case <span>D)
(x + 2)(x + 2)(x</span>²<span> + 4)(x4 + 16)
(x+2)</span>²(x² + 4)(x4 + 16)
the answer is
the option
<span>C) (x – 2)(x + 2)(x2 + 4)(x4 + 16) </span>
Answer:
The correct answer is: p - 8 ∧ restriction p ≠ -4
Step-by-step explanation:
(p² - 4 p - 32) / ( p + 4)
The existence of this rational algebraic expression is possible only if it is:
p + 4 ≠ 0 => Restriction is p ≠ -4
(p² - 4 p - 32) / ( p + 4) = (p² - 8 p + 4 p - 32) / (p + 4) =
= (p (p -8) + 4 (p -8)) / (p + 4)= (p - 8) (p + 4) / ( p +4) = p - 8
God with you!!!
Distance (d) is 23.46 meters
Workup in the photo below.
Good luck.