129.99*0.13
129.99-16.90
113.09*0.05
5.65+113.09
118.74
Answer:
Yes, I am 99% sure your right.
Answer:
b,c,d
Step-by-step explanation:
Answer:
Step-by-step explanation:
Hello!
The variable of interest is:
X: number of daily text messages a high school girl sends.
This variable has a population standard deviation of 20 text messages.
A sample of 50 high school girls is taken.
The is no information about the variable distribution, but since the sample is large enough, n ≥ 30, you can apply the Central Limit Theorem and approximate the distribution of the sample mean to normal:
X[bar]≈N(μ;δ²/n)
This way you can use an approximation of the standard normal to calculate the asked probabilities of the sample mean of daily text messages of high school girls:
Z=(X[bar]-μ)/(δ/√n)≈ N(0;1)
a.
P(X[bar]<95) = P(Z<(95-100)/(20/√50))= P(Z<-1.77)= 0.03836
b.
P(95≤X[bar]≤105)= P(X[bar]≤105)-P(X[bar]≤95)
P(Z≤(105-100)/(20/√50))-P(Z≤(95-100)/(20/√50))= P(Z≤1.77)-P(Z≤-1.77)= 0.96164-0.03836= 0.92328
I hope you have a SUPER day!
Step-by-step explanation:
<em>The</em><em> </em><em>number</em><em> </em><em><u>of</u></em><em><u> </u></em><em><u>vehicle</u></em><em><u>s</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>2</u></em><em><u>5</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>no</u></em><em><u>.</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>truck </u></em><em><u>is</u></em><em><u> </u></em><em><u>9</u></em><em><u> </u></em><em><u>so</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>probability </u></em><em><u>is</u></em><em><u> </u></em><em><u>9</u></em><em><u>/</u></em><em><u>2</u></em><em><u>5</u></em>