In general, the derivative of a single term Ax^(n) is A n x^(n-1) .
And the derivative of a sum of many terms is the sum of the derivatives
of the individual terms.
Using these two rules, the derivative (with respect to 'x') of the expression
in the question is . . .
<em> Y' = -21x² - 16x + 6</em>
Answer:
Yes
Step-by-step explanation:
You can conclude that ΔGHI is congruent to ΔKJI, because you can see/interpret that there all the angles are congruent with one another, like with vertical angles (∠GIH and ∠KIJ) and alternate interior angles (∠H and ∠J, ∠G and ∠K).
We also know that we have two congruent sides, since it provides the information that line GK bisects line HJ, meaning that they have been split evenly (they have been split, with even/same lengths).
<u><em>So now we have three congruent angles, and two congruent sides. This is enough to prove that ΔGHI is congruent to ΔKJI,</em></u>
<u><em /></u>
<span> a) F' = 6 sin(x^2) = 0
x^2 = pi
x = sqrt(pi)
b) Fmax = F(1) + integral [1, pi] f(x) dx = 9.7743 </span>
Answer:
7
/10 0.7
Step-by-step explanation:
To add fractions, find the LCD and then combine.