<span>Because Sal paid for the purchase in full at the time he bought the car stereo, his total at the time was $442.00. Jen bought the same identical car stereo and her payments of $21.30 a month for 18 months equaled $383.40. Add to this total $58.60 in interest and the final total would be $442.00.</span>
Answer:
A) economic order quantity ( order quantity model that will minimize the total holding cost and ordering costs ) =
=
= 122. 74 ≈ 122 ( optimal ordering quantity ) units
B) Annual holding cost = 23 * 122 / 2 = $1403
C ) Annual ordering costs = 1500/122 * 77 = $947
D ) The reorder point = daily demand * lead time = 50 * 3 = 150 units
Explanation:
Annual demand for connectors : 1500
ordering cost ( cost to place and process an order ) : $77
annual holding cost per unit : $23
A) economic order quantity ( order quantity model that will minimize the total holding cost and ordering costs ) =
=
= 122. 74 ≈ 122 ( optimal ordering quantity ) units
B) Annual holding cost = 23 * 122/2 = $1403
C ) Annual ordering costs = 1500 / 122 * 77 = $946.72 ≈ $947
D ) The reorder point = daily demand * lead time = 50 * 3 = 150 units
daily demand = 1500 / 300 = 50
lead time = 3
The answer you are looking for is copyright
Answer:
![\mathbf{current \ price \ of \ the \ bond= \$848.78}](https://tex.z-dn.net/?f=%5Cmathbf%7Bcurrent%20%20%5C%20price%20%5C%20%20of%20%5C%20%20the%20%5C%20bond%3D%20%20%5C%24848.78%7D)
Explanation:
The current price of the bond can be calculated by using the formula:
![current \ price \ of \ the \ bond= ( coupon \times \dfrac{ (1- \dfrac{1}{(1+YTM)^{no \ of \ period }})}{YTM} + \dfrac{Face \ Value }{(1+YTM ) ^{no \ of \ period}}](https://tex.z-dn.net/?f=current%20%20%5C%20price%20%5C%20%20of%20%5C%20%20the%20%5C%20bond%3D%20%28%20coupon%20%5Ctimes%20%20%5Cdfrac%7B%20%281-%20%5Cdfrac%7B1%7D%7B%281%2BYTM%29%5E%7Bno%20%5C%20of%20%5C%20period%20%7D%7D%29%7D%7BYTM%7D%20%2B%20%5Cdfrac%7BFace%20%5C%20Value%20%7D%7B%281%2BYTM%20%29%20%5E%7Bno%20%5C%20of%20%5C%20period%7D%7D)
![current \ price \ of \ the \ bond= ( \dfrac{0.064 \times \$1000}{2} \times \dfrac{ (1- \dfrac{1}{(1+ \dfrac{0.091}{2})^{8 \times 2}})}{\dfrac{0.091}{2}} + \dfrac{\$1000 }{(1+\dfrac{0.091}{2} ) ^{8 \times 2}})](https://tex.z-dn.net/?f=current%20%20%5C%20price%20%5C%20%20of%20%5C%20%20the%20%5C%20bond%3D%20%28%20%5Cdfrac%7B0.064%20%5Ctimes%20%5C%241000%7D%7B2%7D%20%5Ctimes%20%20%5Cdfrac%7B%20%281-%20%5Cdfrac%7B1%7D%7B%281%2B%20%5Cdfrac%7B0.091%7D%7B2%7D%29%5E%7B8%20%5Ctimes%202%7D%7D%29%7D%7B%5Cdfrac%7B0.091%7D%7B2%7D%7D%20%2B%20%5Cdfrac%7B%5C%241000%20%7D%7B%281%2B%5Cdfrac%7B0.091%7D%7B2%7D%20%29%20%5E%7B8%20%5Ctimes%202%7D%7D%29)
![current \ price \ of \ the \ bond= \$32 \times $11.19 + \$490.70](https://tex.z-dn.net/?f=current%20%20%5C%20price%20%5C%20%20of%20%5C%20%20the%20%5C%20bond%3D%20%20%5C%2432%20%5Ctimes%20%2411.19%20%2B%20%5C%24490.70)
![current \ price \ of \ the \ bond= \$358.08+ \$490.70](https://tex.z-dn.net/?f=current%20%20%5C%20price%20%5C%20%20of%20%5C%20%20the%20%5C%20bond%3D%20%20%5C%24358.08%2B%20%5C%24490.70)
![\mathbf{current \ price \ of \ the \ bond= \$848.78}](https://tex.z-dn.net/?f=%5Cmathbf%7Bcurrent%20%20%5C%20price%20%5C%20%20of%20%5C%20%20the%20%5C%20bond%3D%20%20%5C%24848.78%7D)