1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
3 years ago
11

Can somebody please help me. I would really appreciate it

Mathematics
1 answer:
laila [671]3 years ago
4 0
90=6x+3x
90=9x
90/9=x
10=x

3x=3*10=30
6x=6*10=60
hope this helped
You might be interested in
Which expression is equivalent to 4(x+2)?
Alex73 [517]
Hello!

You can expand the 4

4x + 8

the answer is 4x + 8

Hope this helps!
5 0
3 years ago
Half of the tuna sandwich were on white bread. 25% of the ham sandwiches sold were on brown bread.
fgiga [73]

Answer:

The frequency table is shown below.

Step-by-step explanation:

(i) Half of the tuna sandwich were on white bread = 21

On brown bread, tuna = 42 - 21 = 21

(ii) 25% of the ham sandwiches sold were on brown bread.

= 25% (32) = 8

On white bread, 32 - 8 = 24

Frequency table:

                     Tuna             Cheese          Ham         Total

Brown             21                     11                    8                40

White              21                     15                  24               60

Total                42                     26                 32              100

6 0
3 years ago
The answer because I don’t understand measurements
andre [41]
Four and a half gallons of lemonade
6 0
3 years ago
Rationalise the denominator of:<br>1/(√3 + √5 - √2)​
Paul [167]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} }

can be re-arranged as

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}   -   \sqrt{2}   +  \sqrt{5} }

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }  \times \dfrac{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }

We know,

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ {( \sqrt{3}  -  \sqrt{2} )}^{2}  -  {( \sqrt{5}) }^{2} }

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{3 + 2 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{5 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{ - ( -  \sqrt{3} +  \sqrt{2}  + \sqrt{5}) }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}  \times \dfrac{ \sqrt{6} }{ \sqrt{6} }

\rm \:  =  \: \dfrac{-  \sqrt{18} +  \sqrt{12}  + \sqrt{30}}{2  \times 6}

\rm \:  =  \: \dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}

\rm \:  =  \: \dfrac{-  3\sqrt{2} + 2 \sqrt{3}   + \sqrt{30}}{12}

Hence,

\boxed{\tt{ \rm \dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} } =\dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>More Identities to </u><u>know:</u></h3>

\purple{\boxed{\tt{  {(x  -  y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{3} =  {x}^{3} + 3xy(x + y) +  {y}^{3}}}}

\purple{\boxed{\tt{  {(x - y)}^{3} =  {x}^{3} - 3xy(x  -  y) -  {y}^{3}}}}

\pink{\boxed{\tt{  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}}

\pink{\boxed{\tt{  {(x + y)}^{2}  -  {(x - y)}^{2} = 4xy}}}

6 0
3 years ago
In a triangle, the midsegment is ___________ to and ____________ of the non-intersecting side.
erastova [34]
In a triangle, the midsegment is parallel to and half of non-intersecting side.
7 0
3 years ago
Read 2 more answers
Other questions:
  • The cost (in dollars) of making b bracelets is represented by 4 + 5b. The cost (in dollars) of making b necklaces is 8b + 6. Wri
    11·1 answer
  • Bethany's family can eat (13h + 6) hotdogs. Clark's family can eat (10h + 3) hotdogs. Which expression shows the difference betw
    7·1 answer
  • For the function y = -2+5sin(pi/12(x-2)), what is the maximum value?
    9·1 answer
  • What is the mode(s) of this data?
    7·1 answer
  • Math please help: 3x-7+9=
    11·2 answers
  • 1.5 x 32
    10·1 answer
  • Please help me, thank you!​
    14·1 answer
  • If it took 0.05 seconds for the number of wavelengths in the graphic to pass a certain point, what is the frequency of this wave
    10·1 answer
  • Money Neil has a total of twelve $5 and $10 bills in his wallet. He has 5 times as many $10 bills as $5 dollar bills. How many o
    9·1 answer
  • Rider ordered 2 hot dogs and 5 hush puppies. His total was $4.70. Write an equation in standard form for this relation, using x
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!