?                                                                     
ufjkdjfzkvbz,dhfbvc,jc,vjbvjkxb,gbjkfnkgjfs,kbbcvcxccccc
 
        
             
        
        
        
Answer:
(14a+3, 21+4) = 1
Step-by-step explanation:
We are going to use the Euclidean Algorithm to prove that these two integers have a gcd of 1.
gcd (14a + 3, 21a + 4) = gcd (14a+3, 7a + 1) = gcd (1, 7a+1) = 1
Therefore, 
(14a + 3, 21a + 4) = 1
 
        
             
        
        
        
Answer:
m = 35
Step-by-step explanation:
2m + m -15 = 90
3m -15 = 90
      +15  +15
3m = 105
/3     /3
m = 35
To check the work just insert 35 for m:
2(35) + 35 -15 = 90
70 + 35 -15 = 90
105 - 15 = 90
90 = 90