Answer: 11/8
11/8= 1 3/8
1 3/8 > 2/3
Answer:
A. (5, 3)
Step-by-step explanation:
Making use of the hint:
x -2 = 3
x = 5 . . . . . . add 2
The point (x, 3) is on the graph for x=3.
The point (x-2, 3) is on the graph for x=5, so ...
the graph of (x, f(x-2)) will include the point (5, 3).
Answer:
<u>a) x = 3</u>
<u>b) z = 10</u>
<u>c) p = 2</u>
<u>d) x = 7</u>
<u>e) u = 1</u>
Step-by-step explanation:
a) 2x = 6
Despejamos x dividiendo por 2 a amabos lados de la eacuacion.
(2/2)x = 6/2
<u>x = 3</u>
Si remplazamos x en la ecuación original:
2(3)=6
6 = 6
Queda demostrado.
b) 10 + z = 20
Despejamos z restando 10 en amabos lados de la eacuacion.
10-10+z = 20-10
<u>z = 10</u>
Si remplazamos z en la ecuación original:
10 + 10=20
20 = 20
Queda demostrado.
c) p + 9 = 11
Despejamos p restando 9 en amabos lados de la eacuacion.
p + 9 - 9 = 11-9
<u>p = 2</u>
Si remplazamos p en la ecuación original:
2 + 9 = 11
11 = 11
Queda demostrado.
d) 3x + 8 = 29
Despejamos x restando 8 en amabos lados de la eacuacion y luego divideindo por 3 en ambos lados de la ecuación.
3x+8-8 = 29-8
3x = 21
(3/3)x = 21/3
<u>x = 7</u>
Si remplazamos x en la ecuación original:
3(7) + 8 = 29
21 + 8 = 29
29 = 29
Queda demostrado
e) 2u + 8 = 10
Despejamos u restando 8 en amabos lados de la eacuacion y luego divideindo por 2 en ambos lados de la ecuación.
2u+8-8 = 10-8
2x = 2
(2/2)x = 2/2
<u>x = 1</u>
Si remplazamos x en la ecuación original:
2(1) + 8 = 10
2 + 8 = 10
10 = 10
Queda demostrado
Espero te haya sido de ayuda!
<h2>
Thus, the required "option 4)" is correct.</h2>
Step-by-step explanation:
We find,

To find, the binomial expansion of of
= ?
We know that,

∴ 
Here, n = 7, x = x and y = 2y
= 


∴ The binomial expansion of of

Thus, the required "option 4)" is correct.
Answer:
1.46 x 10⁶g
Step-by-step explanation:
Given parameters:
Weight of each bowling ball = 7.3 x 10³g
Number of balls in the bowling alley = 2.0 x 10²bowling balls
Unknown
The weight of the balls in the alley = ?
Solution:
To find the weight of the balls in the alley, multiply the mass of each balls with the total number of balls;
Weight of the balls = 7.3 x 10³ x 2.0 x 10²
Weight of the balls = (7.3 x 2.0) x 10³⁺²
Weight of the balls = 14.6 x 10⁵g
Therefore, the weight of the balls = 1.46 x 10⁶g