To avoid distortion of extreme
values, a good indicator would be the
B. median.
Answer:
Solution given:
1.
diameter(d)=6mm
base(b)=8mm
height (h)=5mm
Area of figure=area of parallelogram +area of semi circle
- base*height+½π(d/2)²
- 8*5+½*π×(6/2)²
- 40+14.14
- 54.4mm²
- <u>Area</u><u> </u><u>:</u><u>5</u><u>4</u><u>.</u><u>1</u><u>4</u><u>m</u><u>m</u><u>²</u>
2.
for triangle
base[b]=6ft
height(h)=9ft
for square
length[l]=9ft
Area of figure=area of square +area of triangle
- =l²+½*b*h
- =9²+½*6*9
- =81+27
- =108ft²
- <u>Area</u><u>:</u><u> </u><u>1</u><u>0</u><u>8</u><u>f</u><u>t</u><u>²</u>
Answer:
3π square units.
Step-by-step explanation:
We can use the disk method.
Since we are revolving around AB, we have a vertical axis of revolution.
So, our representative rectangle will be horizontal.
R₁ is bounded by y = 9x.
So, x = y/9.
Our radius since our axis is AB will be 1 - x or 1 - y/9.
And we are integrating from y = 0 to y = 9.
By the disk method (for a vertical axis of revolution):
![\displaystyle V=\pi \int_a^b [R(y)]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%20%5Cint_a%5Eb%20%5BR%28y%29%5D%5E2%5C%2C%20dy)
So:

Simplify:

Integrate:
![\displaystyle V=\pi\Big[y-\frac{1}{9}y^2+\frac{1}{243}y^3\Big|_0^9\Big]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%5CBig%5By-%5Cfrac%7B1%7D%7B9%7Dy%5E2%2B%5Cfrac%7B1%7D%7B243%7Dy%5E3%5CBig%7C_0%5E9%5CBig%5D)
Evaluate (I ignored the 0):
![\displaystyle V=\pi[9-\frac{1}{9}(9)^2+\frac{1}{243}(9^3)]=3\pi](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%5B9-%5Cfrac%7B1%7D%7B9%7D%289%29%5E2%2B%5Cfrac%7B1%7D%7B243%7D%289%5E3%29%5D%3D3%5Cpi)
The volume of the solid is 3π square units.
Note:
You can do this without calculus. Notice that R₁ revolved around AB is simply a right cone with radius 1 and height 9. Then by the volume for a cone formula:

We acquire the exact same answer.
The area of the circle is 1260.25 π m^2