1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shusha [124]
3 years ago
7

A greater number of healthy and productive ecosystems means a healthier environment overall. This refers to which of the followi

ng terms:
a
genetic diversity
b
speciation
c
ecosystem diversity
d
biodiversity
Advanced Placement (AP)
1 answer:
nlexa [21]3 years ago
6 0

Answer:

C

That means the answer is C, ecosystem diversity.

You might be interested in
If the bar magnet on the left were broken in half, what statement correctly predicts how the two halves of the magnet would reac
Kipish [7]
When the bar magnet is broken in half two resulting halves both have north and south magnetic pole. In the place where it was broken there are opposite magnetic poles.One of two hlaves would be attracted by magnet on the right and another would be reppeled.
8 0
3 years ago
Read 2 more answers
Solve the following differential equation with initial conditions: y''=e^-2t+10e^4t ; y(0)=1, y'(0)=0​
skad [1K]

Answer:

Option A.  y = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

Explanation:

This is a second order DE, so we'll need to integrate twice, applying initial conditions as we go.  At a couple points, we'll need to apply u-substitution.

<u>Round 1:</u>

To solve the differential equation, write it as differentials, move the differential, and integrate both sides:

y''=e^{-2t}+10e^{4t}

\frac{dy'}{dt}=e^{-2t}+10e^{4t}

dy'=[e^{-2t}+10e^{4t}]dt

\int dy'=\int [e^{-2t}+10e^{4t}]dt

Applying various properties of integration:

\int dy'=\int e^{-2t} dt + \int 10e^{4t}dt\\\int dy'=\int e^{-2t} dt + 10\int e^{4t}dt

Prepare for integration by u-substitution

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt, letting u_1=-2t and u_2=4t

Find dt in terms of u_1 \text{ and } u_2

u_1=-2t\\du_1=-2dt\\-\frac{1}{2}du_1=dt     u_2=4t\\du_2=4dt\\\frac{1}{4}du_2=dt

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt\\\int dy'=\int e^{u_1} (-\frac{1}{2} du_1) + 10\int e^{u_2}  (\frac{1}{4} du_2)\\\int dy'=-\frac{1}{2} \int e^{u_1} (du_1) + 10 *\frac{1}{4} \int e^{u_2}  (du_2)

Using the Exponential rule (don't forget your constant of integration):

y'=-\frac{1}{2} e^{u_1} + 10 *\frac{1}{4}e^{u_2} +C_1

Back substituting for u_1 \text{ and } u_2:

y'=-\frac{1}{2} e^{(-2t)} + 10 *\frac{1}{4}e^{(4t)} +C_1\\y'=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\

<u>Finding the constant of integration</u>

Given initial condition  y'(0)=0

y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\0=y'(0)=-\frac{1}{2} e^{-2(0)} + \frac{5}{2}e^{4(0)} +C_1\\0=-\frac{1}{2} (1) + \frac{5}{2}(1) +C_1\\-2=C_1\\

The first derivative with the initial condition applied: y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\

<u>Round 2:</u>

Integrate again:

y' =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\\frac{dy}{dt} =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\dy =[-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int [-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int -\frac{1}{2} e^{-2t} dt + \int \frac{5}{2}e^{4t} dt - \int 2 dt\\\int dy = -\frac{1}{2} \int e^{-2t} dt + \frac{5}{2} \int e^{4t} dt - 2 \int dt\\

y = -\frac{1}{2} * -\frac{1}{2} e^{-2t} + \frac{5}{2} * \frac{1}{4} e^{4t} - 2 t + C_2\\y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + C_2

<u />

<u>Finding the constant of integration :</u>

Given initial condition  y(0)=1

1=y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + C_2\\1 = \frac{1}{4} (1) + \frac{5}{8} (1) - (0) + C_2\\1 = \frac{7}{8} + C_2\\\frac{1}{8}=C_2

So, y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

<u>Checking the solution</u>

y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

This matches our initial conditions here y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + \frac{1}{8} = 1

Going back to the function, differentiate:

y' = [\frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}]'\\y' = [\frac{1}{4} e^{-2t}]' + [\frac{5}{8} e^{4t}]' - [2 t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} [e^{-2t}]' + \frac{5}{8} [e^{4t}]' - 2 [t]' + [\frac{1}{8}]'

Apply Exponential rule and chain rule, then power rule

y' = \frac{1}{4} e^{-2t}[-2t]' + \frac{5}{8} e^{4t}[4t]' - 2 [t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} e^{-2t}(-2) + \frac{5}{8} e^{4t}(4) - 2 (1) + (0)\\y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2

This matches our first order step and the initial conditions there.

y'(0) = -\frac{1}{2} e^{-2(0)} + \frac{5}{2} e^{4(0)} - 2=0

Going back to the function y', differentiate:

y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2\\y'' = [-\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2]'\\y'' = [-\frac{1}{2} e^{-2t}]' + [\frac{5}{2} e^{4t}]' - [2]'\\y'' = -\frac{1}{2} [e^{-2t}]' + \frac{5}{2} [e^{4t}]' - [2]'

Applying the Exponential rule and chain rule, then power rule

y'' = -\frac{1}{2} e^{-2t}[-2t]' + \frac{5}{2} e^{4t}[4t]' - [2]'\\y'' = -\frac{1}{2} e^{-2t}(-2) + \frac{5}{2} e^{4t}(4) - (0)\\y'' = e^{-2t} + 10 e^{4t}

So our proposed solution is a solution to the differential equation, and satisfies the initial conditions given.

7 0
2 years ago
Maglista ng limang halimbawa ng mga pangunang babala o early warning systems na ginagamit ng pamahalaan upang bigyang kaalaman/i
Margaret [11]

<em>1</em><em>)</em><em>I </em><em>think </em><em>it's </em><em>face </em><em>book </em><em>cause </em><em>maari </em><em>Silang </em><em>mag </em><em>pose </em><em>Ng </em><em>MGA </em><em>maaring </em><em>kalamidad </em><em>na </em><em>pwede </em><em>nating </em><em>paghandaan </em><em>kung </em><em>sakali </em><em>na </em><em>may </em><em>mag </em><em>post </em><em>sa </em><em>fb </em>

<em> </em><em>2</em><em>)</em><em> </em><em>may </em><em>ginagawa </em><em>na </em><em>Ang </em><em>MGA </em><em>astrounout </em><em>na </em><em>kakaiba </em><em>satin</em>

<em>3</em><em>)</em><em> </em><em>madami </em><em>bang </em><em>sinusugod </em><em>sa </em><em>hospital </em><em>dahil </em><em>sa </em><em>kalamidad</em>

<em>4</em><em>)</em><em> </em><em>nag </em><em>kaka </em><em>landslide </em><em>sa </em><em>ibat </em><em>ibang </em><em>Lugar</em>

<em>5</em><em>)</em><em> </em><em>may </em><em>MGA </em><em>manghuhula </em><em> </em><em>na </em><em>may </em><em>mangyayari </em><em>na </em><em>kalamidad</em>

Explanation:

brainlist me

4 0
3 years ago
Rock debris from space called enter Earth and are called If they survive this fall and land on Earth, they are called
Sindrei [870]
Meteoroids and meteorites
8 0
3 years ago
The victims of intimate partner violence are _______________% female.
Sladkaya [172]
The victims of intimate partner violence are about 85% female.
6 0
3 years ago
Other questions:
  • What were the tensions and conflicts between local and national authorities in the decades after the american revolution
    15·1 answer
  • List three duties of the federal bureaucracy
    10·2 answers
  • Co wnieśli w dzieje Kościoła: Św, Benedykt, Św. Grzegorz Wielki, Grzegorz VII i św. Franciszek z Asyżu.
    6·1 answer
  • The rivalry between students to be the high school valedictorian is an example of
    13·1 answer
  • What is the answer for 4(x-4)+36
    11·2 answers
  • Which landform is created by wind?
    15·2 answers
  • Why is there a minimum mass for an object to become a star?
    12·2 answers
  • Which equation is used to determine the density of a substance?
    9·2 answers
  • Brainiest if you get it right
    12·1 answer
  • 1. what is PESTEL or STEEP of strategic management?<br>​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!