Answer : x=−5
Step-by-step explanation: Step 1: Simplify both sides of the equation.
−3−3x=−4(2x+7)
−3+−3x=(−4)(2x)+(−4)(7)(Distribute)
−3+−3x=−8x+−28
−3x−3=−8x−28
Step 2: Add 8x to both sides.
−3x−3+8x=−8x−28+8x
5x−3=−28
Step 3: Add 3 to both sides.
5x−3+3=−28+3
5x=−25
Step 4: Divide both sides by 5.
5x
/5
= −25
/5
x=−5
Answer:
x=−5
This is my interpretation of the questions answer. If you are thinking of a design ten just make a snake one. Its simple but not hard.
This problem is an example of solving equations with variables on both sides. To solve, we must first set up an equation for both the red balloon and the blue balloon.
Since the red balloon rises at 2.6 meters per second, we can represent this part of the equation as 2.6s. The balloon is already 7.3 meters off of the ground, so we just add the 7.3 to the 2.6s:
2.6s + 7.3
Since the blue balloon rises at 1.5 meters per second, we can represent this part of the equation as 1.5s. The balloon is already 12.4 meters off of the ground, so we just add the 12.4 to the 1.5:
1.5s + 12.4
To determine when both balloons are at the same height, we set the two equations equal to each other:
2.6s + 7.3 = 1.5s + 12.4
Then, we solve for s. First, the variables must be on the same side of the equation. We can do this by subtracting 1.5s from both sides of the equation:
1.1s + 7.3 = 12.4
Next, we must get s by itself. We work towards this by subtracting 7.3 from both sides of the equation:
1.1s = 5.1
Last, we divide both sides by 1.1. So s = 4.63.
This means that it will take 4.63 seconds for both balloons to reach the same height. If we want to know what height that is, we simply plug the 4.63 back into each equation:
2.6s + 7.3
= 2.6 (4.63) + 7.3
= 19.33
1.5s + 12.4
= 1.5 (4.63) + 12.4
= 19.33
After 4.63 seconds, the balloons will have reached the same height: 19.33 meters.
Answer:
C) The Spearman correlation results should be reported because at least one of the variables does not meet the distribution assumption required to use Pearson correlation.
Explanation:
The following multiple choice responses are provided to complete the question:
A) The Pearson correlation results should be reported because it shows a stronger correlation with a smaller p-value (more significant).
B) The Pearson correlation results should be reported because the two variables are normally distributed.
C) The Spearman correlation results should be reported because at least one of the variables does not meet the distribution assumption required to use Pearson correlation.
D) The Spearman correlation results should be reported because the p-value is closer to 0.0556.
Further Explanation:
A count variable is discrete because it consists of non-negative integers. The number of polyps variable is therefore a count variable and will most likely not be normally distributed. Normality of variables is one of the assumptions required to use Pearson correlation, however, Spearman's correlation does not rest upon an assumption of normality. Therefore, the Spearman correlation would be more appropriate to report because at least one of the variables does not meet the distribution assumption required to use Pearson correlation.
Our current list has 11!/2!11!/2! arrangements which we must divide into equivalence classes just as before, only this time the classes contain arrangements where only the two As are arranged, following this logic requires us to divide by arrangement of the 2 As giving (11!/2!)/2!=11!/(2!2)(11!/2!)/2!=11!/(2!2).
Repeating the process one last time for equivalence classes for arrangements of only T's leads us to divide the list once again by 2