Answer:
15 units
Step-by-step explanation:
K(8, 6) and J(-4, -3)
Distance between 2 points

Thus using the formula above,
distance between points J and K
![= \sqrt{ {[8- (-4)]}^{2} + {[6- (-3)]}^{2} } \\ = \sqrt{ {12}^{2} + {9}^{2} } \\ = \sqrt{225} \\ = 15 \: units](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%7B%20%7B%5B8-%20%28-4%29%5D%7D%5E%7B2%7D%20%20%2B%20%20%7B%5B6-%20%28-3%29%5D%7D%5E%7B2%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B%20%7B12%7D%5E%7B2%7D%20%20%2B%20%20%7B9%7D%5E%7B2%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B225%7D%20%20%5C%5C%20%20%3D%2015%20%5C%3A%20units)
Sqrt 13 and 1.1919919991... are irrational, meaning that they can't be described in a fraction of one integer over another, like 1/3, 45/44 or 57/107, these numbers are rational. Most irrationals are known constants like e or π, endless non-repeating decimals, or roots of non-perfect numbers like 13, 7, 5 or 2.
<span> the answers are ...C. 16x – 4 and D. 4(4x – 1) ...
Hope it helps !!!</span>
As is the case for any polynomial, the domain of this one is (-infinity, +infinity).
To find the range, we need to determine the minimum value that f(x) can have. The coefficients here are a=2, b=6 and c = 2,
The x-coordinate of the vertex is x = -b/(2a), which here is x = -6/4 = -3/2.
Evaluate the function at x = 3/2 to find the y-coordinate of the vertex, which is also the smallest value the function can take on. That happens to be y = -5/2, so the range is [-5/2, infinity).