We assume the composite figure is a cone of radius 10 inches and slant height 15 inches set atop a hemisphere of radius 10 inches.
The formula for the volume of a cone makes use of the height of the apex above the base, so we need to use the Pythagorean theorem to find that.
h = √((15 in)² - (10 in)²) = √115 in
The volume of the conical part of the figure is then
V = (1/3)Bh = (1/3)(π×(10 in)²×(√115 in) = (100π√115)/3 in³ ≈ 1122.994 in³
The volume of the hemispherical part of the figure is given by
V = (2/3)π×r³ = (2/3)π×(10 in)³ = 2000π/3 in³ ≈ 2094.395 in³
Then the total volume of the figure is
V = (volume of conical part) + (volume of hemispherical part)
V = (100π√115)/3 in³ + 2000π/3 in³
V = (100π/3)(20 + √115) in³
V ≈ 3217.39 in³
Answer:
-2/5
Step-by-step explanation:
We can find the slope of a line by using
m = (y2-y1)/ (x2-x1)
= (6-4)/(41-46)
= 2/-5
= -2/5
Ur answer is : h(d) = 2d + 3
because if u sub in the points in ur table, this equation works....with the number of months being d and the length of the hair being h(d)
The only reason an inequality would change would be because a number is divided or multiplied by a negative number. So if it stayed the same, then it would be because there was no division or multiplication by a negative number. Hope I helped :)