Answer:
2. a and b only.
Step-by-step explanation:
We can check all of the given conditions to see which is true and which false.
a. f(c)=0 for some c in (-2,2).
According to the intermediate value theorem this must be true, since the extreme values of the function are f(-2)=1 and f(2)=-1, so according to the theorem, there must be one x-value for which f(x)=0 (middle value between the extreme values) if the function is continuous.
b. the graph of f(-x)+x crosses the x-axis on (-2,2)
Let's test this condition, we will substitute x for the given values on the interval so we get:
f(-(-2))+(-2)
f(2)-2
-1-1=-3 lower limit
f(-2)+2
1+2=3 higher limit
according to these results, the graph must cross the x-axis at some point so the graph can move from f(x)=-3 to f(x)=3, so this must be true.
c. f(c)<1 for all c in (-2,2)
even though this might be true for some x-values of of the interval, there are some other points where this might not be the case. You can find one of those situations when finding f(-2)=1, which is a positive value of f(c), so this must be false.
The final answer is then 2. a and b only.
Answer:
This is achieved for the specific case when high quantum number with low resolution is present.
Step-by-step explanation:
In Quantum Mechanics, the probability density defines the region in which the likelihood of finding the particle is most.
Now for the particle in the box, the probability density is also dependent on resolution as well so for large quantum number with small resolution, the oscillations will be densely packed and thus indicating in the formation of a constant probability density throughout similar to that of classical approach.
The rate Ritz can eat apples is 8/15 apples per minute.
Set the rate (which is measured apples / minutes) equal to 16 apples / t minutes.
(8/15) = (16/t)
Cross multiply.
16*15 = 8t
t = 20
The answer is 30 minutes. You could solve the problem with basic reasoning as well. 16 is twice the number of apples as 8, so the time it takes to eat them will be double 15 minutes.