Let the groups be A, B, C and D. Then
n(A ∩ B ∩ C ∩ D) = 1
n(A ∩ B ∩ C ∩ D') = 10 - 1 = 9
n(A ∩ B ∩ C' ∩ D) = 10 - 1 = 9
n(A ∩ B' ∩ C ∩ D) = 10 - 1 = 9
n(A' ∩ B ∩ C ∩ D) = 10 - 1 = 9
n(A ∩ B ∩ C' ∩ D') = 100 - 9 - 9 - 1 = 81
n(A ∩ B' ∩ C ∩ D') = 100 - 9 - 9 - 1 = 81
n(A' ∩ B ∩ C ∩ D') = 100 - 9 - 9 - 1 = 81
n(A' ∩ B ∩ C' ∩ D) = 100 - 9 - 9 - 1 = 81
n(A' ∩ B' ∩ C ∩ D) = 100 - 9 - 9 - 1 = 81
n(A ∩ B' ∩ C' ∩ D) = 100 - 9 - 9 - 1 = 81
n(A ∩ B' ∩ C' ∩ D') = 1000 - 81 - 81 - 81 - 9 - 9 - 9 - 1 = 729
n(A' ∩ B ∩ C' ∩ D') = 1000 - 81 - 81 - 81 - 9 - 9 - 9 - 1 = 729
n(A' ∩ B' ∩ C ∩ D') = 1000 - 81 - 81 - 81 - 9 - 9 - 9 - 1 = 729
n(A' ∩ B' ∩ C' ∩ D) = 1000 - 81 - 81 - 81 - 9 - 9 - 9 - 1 = 729
Thus, all together there are 4(729) + 6(81) + 4(9) + 1 = 2,916 + 486 + 36 + 1 = 3,439 members in the groups.
Therefore, there are all together 3,439 members in the groups.
Answer: 5*2*2*3*3
Step-by-step explanation:
First you divide 180 by 2 and you get 90. Then you proceed to divide that by 2 again and get 45. You will then divide 45 by 3 to get 15. Then divide 15 by 3 again and get 5, which cannot be divided any smaller.
180/2=90
90/2=45
45/3=15
15/3=5
Answer:
none of them are true
Step-by-step explanation:
Answer:
6
Step-by-step explanation:
I learned this last year