Answer:
The relation is not a function
The domain is {1, 2, 3}
The range is {3, 4, 5}
Step-by-step explanation:
A relation of a set of ordered pairs x and y is a function if
- Every x has only one value of y
- x appears once in ordered pairs
<u><em>Examples:</em></u>
- The relation {(1, 2), (-2, 3), (4, 5)} is a function because every x has only one value of y (x = 1 has y = 2, x = -2 has y = 3, x = 4 has y = 5)
- The relation {(1, 2), (-2, 3), (1, 5)} is not a function because one x has two values of y (x = 1 has values of y = 2 and 5)
- The domain is the set of values of x
- The range is the set of values of y
Let us solve the question
∵ The relation = {(1, 3), (2, 3), (3, 4), (2, 5)}
∵ x = 1 has y = 3
∵ x = 2 has y = 3
∵ x = 3 has y = 4
∵ x = 2 has y = 5
→ One x appears twice in the ordered pairs
∵ x = 2 has y = 3 and 5
∴ The relation is not a function because one x has two values of y
∵ The domain is the set of values of x
∴ The domain = {1, 2, 3}
∵ The range is the set of values of y
∴ The range = {3, 4, 5}
Answer:
15.5884572681
Step-by-step explanation:
The first is not a polynomial as one term is dividing.
Answer:
x = 4, y = 3
Step-by-step explanation:
Equating corresponding coordinates , gives
2x = 8 ( divide both sides by 2 )
x = 4
and
3y = 9 ( divide both sides by 3 )
y = 3
The combination formula is given by
C(n, r) =

C(11, 8) =

C(11, 8) = 165
So, there are 165 ways of choosing 8 flowers out of 11 flowers