You can only buy four chocolate bars and you will have 25 cents left
The value of any log function approaches negative infinity as the argument approaches zero from above.
In geometry, it would be always helpful to draw a diagram to illustrate the given problem.
This will also help to identify solutions, or discover missing information.
A figure is drawn for right triangle ABC, right-angled at B.
The altitude is drawn from the right-angled vertex B to the hypotenuse AC, dividing AC into two segments of length x and 4x.
We will be using the first two of the three metric relations of right triangles.
(1) BC^2=CD*CA (similarly, AB^2=AD*AC)
(2) BD^2=CD*DA
(3) CB*BA = BD*AC
Part (A)
From relation (2), we know that
BD^2=CD*DA
substitute values
8^2=x*(4x) => 4x^2=64, x^2=16, x=4
so CD=4, DA=4*4=16 (and AC=16+4=20)
Part (B)
Using relation (1)
AB^2=AD*AC
again, substitute values
AB^2=16*20=320=8^2*5
=>
AB
=sqrt(8^2*5)
=8sqrt(5)
=17.89 (approximately)
The top one. they can't be expressed in a fraction or decimal