Triangle AGB is congruent to Triangle CGB.
Answer will be A, and if you need help with math work Connects is a great app to use
Answer:
hypotenuse is 22.47 m
Step-by-step explanation:
The length of both legs of a right angle triangle are 8m and 21 m
We need to find the hypotenuse
To find hypotenuse we use Pythagorean theorem
Hypotenuse is AC and other two legs are AB and BC

Hypotenuse ^2 = 8^2 + 21^2
hypotenuse = 
= 
= 
= 22.47
So the length of the hypotenuse is 22.47 m
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
Answer:
the possible outcome are two but don't trust me on that