Answer:
9/4
Step-by-step explanation:
This is quite simple you do 1/2 divided by 2/8 which will become multiplication. Then its that number plus 1/4
you get a answer of
9/4 in fraction form
2.25 in decimal form
2 1/4 in mixed fraction form
Answer:
82.5000001 Close to around this ( maybe .11 off)
Explanation:
27.5 ÷ .33333333 = 82.5000001
So it tells us that g(3) = -5 and g'(x) = x^2 + 7.
So g(3) = -5 is the point (3, -5)
Using linear approximation
g(2.99) is the point (2.99, g(3) + g'(3)*(2.99-3))
now we just need to simplify that
(2.99, -5 + (16)*(-.01)) which is (2.99, -5 + -.16) which is (2.99, -5.16)
So g(2.99) = -5.16
Doing the same thing for the other g(3.01)
(3.01, g(3) + g'(3)*(3.01-3))
(3.01, -5 + 16*.01) which is (3.01, -4.84)
So g(3.01) = -4.84
So we have our linear approximation for the two.
If you wanted to, you could check your answer by finding g(x). Since you know g'(x), take the antiderivative and we will get
g(x) = 1/3x^3 + 7x + C
Since we know g(3) = -5, we can use that to solve for C
1/3(3)^3 + 7(3) + C = -5 and we find that C = -35
so that means g(x) = (x^3)/3 + 7x - 35
So just to check our linear approximations use that to find g(2.99) and g(3.01)
g(2.99) = -5.1597
g(3.01) = -4.8397
So as you can see, using the linear approximation we got our answers as
g(2.99) = -5.16
g(3.01) = -4.84
which are both really close to the actual answer. Not a bad method if you ever need to use it.
Answer: x=3 ==> 1st option
Step-by-step explanation:
FH=FG+GH
18=4x+2x
6x=18
x=3 ==> 1st option
Answer:
{8 cm, 15 cm, 17 cm}
Step-by-step explanation:
we know that
The length sides of a right triangle must satisfy the Pythagoras Theorem
so

where
c is the greater side (the hypotenuse)
a and b are the legs (perpendicular sides)
<u><em>Verify each case</em></u>
case 1) we have
{5 cm, 15 cm, 18 cm}
substitute in the formula

----> is not true
therefore
Sean cannot make a right triangle with this set of lengths
case 2) we have
{6 cm, 12 cm, 16 cm}
substitute in the formula

----> is not true
therefore
Sean cannot make a right triangle with this set of lengths
case 3) we have
{5 cm, 13 cm, 15 cm}
substitute in the formula

----> is not true
therefore
Sean cannot make a right triangle with this set of lengths
case 4) we have
{8 cm, 15 cm, 17 cm}
substitute in the formula

----> is true
therefore
Sean can make a right triangle with this set of lengths