Answer:
The charge for admission is $6 and the charge for each ride is $2
Step-by-step explanation:
Let
x ----> the charge for admission
y ----> the charge for each ride
we have that
-----> equation A
-----> equation B
Solve the system by elimination
Subtract equation B from equation A

Find the value of x
substitute the value of y in any equation




therefore
The charge for admission is $6 and the charge for each ride is $2
147.59 is the total amount given to each brother after all purchases were made.
Answer:
1) -0.669
2) -0.669
3) 0.669
Step-by-step explanation:
Since we are subtracting or adding multipled of pi, we will either obtain 0.669 or -0.669 as our answer for each of the three different questions.
Cosine is the x-coordinate in our orderes pairs. If our point ends up on the right side of the y-axis, the cosine will be positive. If our point ends up on left side, it will be negative.
Choose a thetha (I'm going to choose it in degrees) in the first quadrant to help with a visual.
If theta=70:
1) then 180-70=110 which is in second quadrant, so our cosines will be opposite in value.
2) then 180+70=250 which is in third quadrant, so our cosines will be opposite in value.
3) then 4×180-70=720-70=650 =1(360)+290 which ends up in the 4th quadrant which means the consines will have the same value.
Answer:
A. R2 = 0.6724, meaning 67.24% of the total variation in test scores can be explained by the least‑squares regression line.
Step-by-step explanation:
John is predicting test scores of students on the basis of their home work averages and he get the following regression equation
y=0.2 x +82.
Here, dependent variable y is the test scores and independent variable x is home averages because test scores are predicted on the basis of home work averages.
The coefficient of determination R² indicates the explained variability of dependent variable due to its linear relationship with independent variable.
We are given that correlation coefficient r= 0.82.
coefficient of determination R²=0.82²=0.6724 or 67.24%.
Thus, we can say that 67.24% of total variability in test scores is explained by its linear relationship with homework averages.
Also, we can say that, R2 = 0.6724, meaning 67.24% of the total variation in test scores can be explained by the least‑squares regression line.