1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miskamm [114]
3 years ago
6

PLEASE ANSWER THIS I DIDN'T GET ANYTHING DUE IN 2 HOURS!!!!!

Mathematics
2 answers:
NikAS [45]3 years ago
5 0

Answer:

2

Step-by-step explanation:

√(1 - cos^2x) = sin x

and

√(1 - sin^2x) = cos x

So the expression becomes:

sin x / sin x  + cos x / cos x

= 2

Aliun [14]3 years ago
3 0

Answer:

H

Step-by-step explanation:

using the trigonometric identity

• sin²x + cos²x = 1

⇒ sinx = √(1 - cos²x) and cosx = √(1 - sin²x)

We can express as

\frac{sinx}{sinx} + cosx / cosx = 1 + 1 = 2 → H



You might be interested in
How do i solve y=20x+500
Vesnalui [34]
<span>Simplifying y = 20x + 500 Reorder the terms: y = 500 + 20x Solving y = 500 + 20x Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Simplifying y = 500 + 20x</span>
8 0
3 years ago
Solve the equation : 2x + 7 = 21 and find the value of x. Is 2x + 7 = 21 a first degree equation or not?
Paraphin [41]

Answer:

The proposed equation is solved as follows:

2X + 7 = 21

2X = 21 - 7

2X = 14

X = 14 / 2

X = 7

The value of X is 7.

A first degree equation is an algebraic equation in which each term is either a constant or a product of a fixed term on a single variable. Therefore, this equation is a first degree one, since it only has a single variable, which is X.

4 0
2 years ago
From first principles, find the indicated derivatives​
LenaWriter [7]

By definition of the derivative,

\displaystyle\frac{dr}{ds} = \lim_{h\to0} \frac{\left(\frac{(s + h)^3}2 + 1\right) - \left(\frac{s^3}2 + 1\right)}{h}

\displaystyle\frac{dr}{ds} = \lim_{h\to0} \frac{\left(\frac{s^3+3s^2h+3sh^2+h^3}2 + 1\right) - \left(\frac{s^3}2 + 1\right)}{h}

\displaystyle\frac{dr}{ds} = \lim_{h\to0} \frac{\frac{3s^2h+3sh^2+h^3}2}{h}

\displaystyle\frac{dr}{ds} = \lim_{h\to0} \frac12 \frac{3s^2h+3sh^2+h^3}{h}

\displaystyle\frac{dr}{ds} = \lim_{h\to0} \frac12 (3s^2+3sh+h^2)

\displaystyle\frac{dr}{ds} = \frac{3s^2}2

6 0
2 years ago
Greatest common factor of 6,12, and 21
kiruha [24]

Answer:

3

Step-by-step explanation:

6=2 \times 3 \\ \\ 12=3 \times 2^2 \\ \\ 21=3 \times 7

8 0
2 years ago
Find the orthocenter for the triangle described by each set of vertices.
givi [52]

Answer:

The orthocentre of the given vertices ( 2 , -3.5)

Step-by-step explanation:

<u><em>Step(i)</em></u>:-

The orthocentre is the intersecting point for all the altitudes of the triangle.

The point where the altitudes of a triangle meet is known as the orthocentre.

Given Points are K (3.-3), L (2,1), M (4,-3)

<em>The Altitudes are perpendicular line from one side of the triangle to the opposite vertex</em>

<em>The altitudes are  MN , KO , LP</em>

<u><em>step(ii):-</em></u>

<em>  </em>  Slope of the line  

                          KL = \frac{y_{2}-y_{1}  }{x_{2}-x_{1}  } = \frac{1-(-3)}{2-3} = -4

The slope of MN =

The perpendicular slope of KL

                           = \frac{-1}{m} = \frac{-1}{-4} = \frac{1}{4}

The equation of the altitude

                                 y - y_{1} = m( x-x_{1} )

                                y - (-3) = \frac{1}{4} ( x-4 )

                               4y +12 = x -4

                                x - 4 y -16 = 0 ...(i)

Step(iii):-

 Slope of the line  

                          LM = \frac{y_{2}-y_{1}  }{x_{2}-x_{1}  } = \frac{-3-1}{4-2} = -2

The slope of KO =

The perpendicular slope of LM

                           = \frac{-1}{m} = \frac{-1}{-2} = \frac{1}{2}

The equation of the altitude

                                 y - y_{1} = m( x-x_{1} )

The equation of the line passing through the point K ( 3,-3) and slope

m = 1/2

                                y - (-3) = \frac{1}{2} ( x-3 )

                                2y +6 = x -3

                             x - 2y -9 =0 ....(ii)    

Solving equation (i) and (ii) , we get

  subtracting equation (i) and (ii) , we get

                   x - 4y -16 -( x-2y-9) =0

                       - 2y -7 =0

                      -2y = 7

                        y = - 3.5

Substitute y = -3.5 in equation x -4y-16=0

               x - 4( -3.5) - 16 =0

               x +14-16 =0

                x -2 =0

                  x = 2

The orthocentre of the given vertices ( 2 , -3.5)

4 0
3 years ago
Other questions:
  • Can someone help me with 1&amp; 2 will mark brainiest
    5·1 answer
  • Evaluate 10x2y–2 for x = –1 and y = –2.
    12·1 answer
  • Justin bought 10 pounds of flour for $5. How many pounds of flour did he get per dollar?
    9·1 answer
  • Solve for x<br> 6.58-8.36x=3.98x-27.33<br> Round to nearest hundred
    12·2 answers
  • How do you turn a fraction into a percent
    7·2 answers
  • Please please help please
    6·1 answer
  • Mr. Lester's maximum heart rate is 180 beats per minute. When he exercises at the gym.
    15·2 answers
  • Convert 1.97 kJ to calories <br>​
    12·1 answer
  • Which sequences are arithmetic? Check all that apply.
    13·1 answer
  • Please help!! Very urgent..thank you!!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!