1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11111nata11111 [884]
3 years ago
9

X = y + 12 How to solve for variable

Mathematics
1 answer:
Alja [10]3 years ago
7 0

Answer:

x-y=12

Step-by-step explanation:

You might be interested in
1. JACKSON WALKS 6 BLOCKS IN 4 MINUTES. HOW FAST IS<br> HE WALKING?
pochemuha

Answer:

Jackson is walking an average of 1.5 blocks per minute.

Step-by-step explanation:

6 divided by 4 is 1.5

8 0
3 years ago
Does anyone know how to do this? I’m confused
nikklg [1K]

Answer:

cos(θ)

Step-by-step explanation:

Para una función f(x), la derivada es el límite de  

h

f(x+h)−f(x)

​

, ya que h va a 0, si ese límite existe.

dθ

d

​

(sin(θ))=(  

h→0

lim

​

 

h

sin(θ+h)−sin(θ)

​

)

Usa la fórmula de suma para el seno.

h→0

lim

​

 

h

sin(h+θ)−sin(θ)

​

 

Simplifica sin(θ).

h→0

lim

​

 

h

sin(θ)(cos(h)−1)+cos(θ)sin(h)

​

 

Reescribe el límite.

(  

h→0

lim

​

sin(θ))(  

h→0

lim

​

 

h

cos(h)−1

​

)+(  

h→0

lim

​

cos(θ))(  

h→0

lim

​

 

h

sin(h)

​

)

Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.

sin(θ)(  

h→0

lim

​

 

h

cos(h)−1

​

)+cos(θ)(  

h→0

lim

​

 

h

sin(h)

​

)

El límite lim  

θ→0

​

 

θ

sin(θ)

​

 es 1.

sin(θ)(  

h→0

lim

​

 

h

cos(h)−1

​

)+cos(θ)

Para calcular el límite lim  

h→0

​

 

h

cos(h)−1

​

, primero multiplique el numerador y denominador por cos(h)+1.

(  

h→0

lim

​

 

h

cos(h)−1

​

)=(  

h→0

lim

​

 

h(cos(h)+1)

(cos(h)−1)(cos(h)+1)

​

)

Multiplica cos(h)+1 por cos(h)−1.

h→0

lim

​

 

h(cos(h)+1)

(cos(h))  

2

−1

​

 

Usa la identidad pitagórica.

h→0

lim

​

−  

h(cos(h)+1)

(sin(h))  

2

 

​

 

Reescribe el límite.

(  

h→0

lim

​

−  

h

sin(h)

​

)(  

h→0

lim

​

 

cos(h)+1

sin(h)

​

)

El límite lim  

θ→0

​

 

θ

sin(θ)

​

 es 1.

−(  

h→0

lim

​

 

cos(h)+1

sin(h)

​

)

Usa el hecho de que  

cos(h)+1

sin(h)

​

 es un valor continuo en 0.

(  

h→0

lim

​

 

cos(h)+1

sin(h)

​

)=0

Sustituye el valor 0 en la expresión sin(θ)(lim  

h→0

​

 

h

cos(h)−1

​

)+cos(θ).

cos(θ)

5 0
3 years ago
Read 2 more answers
How do u write a ratio
Vsevolod [243]
You can write a ratio like this:
Compare 5 oz of water to 19 oz of paint 
Three types of ratios:
5/19, 5 to 19, 5:19
4 0
4 years ago
Please help find mad question last one please help ASAP
MatroZZZ [7]

Answer:

4

Step-by-step explanation:

add the numbers.

3+7+4+2= 16

then divide the answer by how much there is.

16 // 4= 4

//= divide

hope this helps

7 0
3 years ago
8s + 9 = 7s + 6 <br>s= ? ​
denis-greek [22]

Answer:

s = -3

Step-by-step explanation:

8s + 9 = 7s + 6

Subtract 7s from each side

8s-7s + 9 = 7s-7s + 6

s+9 = 6

Subtract 9 from each side

s + 9-9 =   6-9

s = -3  

7 0
3 years ago
Read 2 more answers
Other questions:
  • How many times does 16 go into 42. can i get some help plz!
    12·2 answers
  • Three less than “x” is equal to 13
    8·2 answers
  • Assembly of a television set in the factory is set at 45 minutes. Some workers take a shorter time (t) at this while some take l
    6·2 answers
  • What would the variables for a and b be? 3/x + 5/x^2 = (ax+b)/x^2
    6·1 answer
  • One number is seven less than four times the other number. The sum of the two numbers is 93. Find the numbers.
    6·1 answer
  • How would i solve this?
    13·1 answer
  • THIS IS WORTH 30 POINTS
    6·2 answers
  • Lucy is knitting a blanket and needs to buy some more yarn. At her local craft store, 2 skeins of yarn cost 57 and 8 skeins of y
    12·1 answer
  • HELP !!
    5·1 answer
  • Prove 21 and 24 are supplementary. Move options to the boxes to complete the proof.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!