Yes, I agree with statement b/c in meiosis I, specifically in prophase I the homologous chromosomes line and form tetrads in which they exhibit the act of ‘crossing over’ which allows for genetic diversity; This would not occur in mitosis as body cells are produced to repair or for growth so the division of cells must allow for the exact replication of DNA or it is not possible to repair the body or growth if there is genetic variation in each cell. Also, in Meiosis I, specifically when metaphase I occurs, it is impossible to predict how the homologous chromosomes will be split, therefore creating even more diversity of genes known as Independent assortment. None of these processes occur in meiosis II, as the exchange of DNA and act of genetic diversity has already occurred in Meiosis I, therefore Meiosis II simply has to go throwing regular cell division making it more similar to mitosis than Meiosis I; Independent assortment and crossing over are the processes that set Meiosis I to differ from the others.
(Go into more depth about how body cells have to be completely identical whereas gametes have to have genetic diversity)
(M1xVi1)+(M2xVi2)=(M1xVf1)+(M2xVf2)
(.08x.5)+(.05x0)=(.08x-.1)+(.05xVf2)
Marble B's resulting velocity is .64
<span>When the dna pieces called telomeres get too short, the cell can no longer divide.
</span>We can define Telomeres as they<span> are the caps that are present at the end of each strand of DNA and there function is also that they protect our chromosomes, when they get too short the cell can no longer divide these dna pieces and they die.</span>
Answer:
b) Operons for coordinated gene expression
Explanation:
Operon refers to a unit of genetic function and is mainly found in bacteria and phages. An operon consists of a promoter, an operator, and a coordinately regulated cluster of structural genes. The genes of an operon code for proteins or enzymes that mostly function in a common pathway. It allows a single promoter and operator or any other regulatory sequence to regulate the expression of functionally related genes.
For instance, lac operon consists of three structural genes that code for the enzymes involved in the catabolism of lactose sugar. The operon is expressed only when lactose is available in the medium. This pattern of gene regulation is not found in eukaryotes.
Explanation:
diffusion, osmosis and active transport