9514 1404 393
Answer:
- 2nd force: 99.91 lb
- resultant: 213.97 lb
Step-by-step explanation:
In the parallelogram shown, angle B is the supplement of angle DAB:
∠B = 180° -77°37' = 102°23'
Angle ACB is the difference of angles 77°37' and 27°8', so is 50°29'.
Now, we know the angles and one side of triangle ABC. We can use the law of sines to solve for the other two sides.
BC/sin(A) = AB/sin(C)
AD = BC = AB·sin(A)/sin(C) = (169 lb)sin(27°8')/sin(50°29') ≈ 99.91 lb
AC = AB·sin(B)/sin(C) = (169 lb)sin(102°23')/sin(50°29') ≈ 213.97 lb
You need to create common denominators and then add and then subtract to get 22/48
1. If you have 1 first then... 1,2,3,4 - 1,3,2,4 - 1,2,4,3 - 1,3,4,2 - 1,4,3,2 - 1,4,2,3
2. If you have 2 first the.... 2,1,3,4,- 2,1,4,3 - 2,3,1,4 - 2,3,4,1 - 2,4,3,1- 2,4,1,3
3. And so one with 3,4
Hope this helps:)
(d) The particle moves in the positive direction when its velocity has a positive sign. You know the particle is at rest when
and
, and because the velocity function is continuous, you need only check the sign of
for values on the intervals (0, 3) and (3, 6).
We have, for instance
and
, which means the particle is moving the positive direction for
, or the interval (3, 6).
(e) The total distance traveled is obtained by integrating the absolute value of the velocity function over the given interval:

which follows from the definition of absolute value. In particular, if
is negative, then
.
The total distance traveled is then 4 ft.
(g) Acceleration is the rate of change of velocity, so
is the derivative of
:

Compute the acceleration at
seconds:

(In case you need to know, for part (i), the particle is speeding up when the acceleration is positive. So this is done the same way as part (d).)