Answer:
cosA = 0.6
Step-by-step explanation:
Using the Pythagorean identity
sin²A + cos²A = 1 ( subtract sin²A from both sides )
cos²A = 1 - sin²A ( take the square root of both sides )
cosA = ± 
Since only the positive value is required , then
cosA = 
= 
= 
= 0.6
Answer: -5
Step-by-step explanation:
Step-by-step explanation:
m<5=180-m<4 (linear pair)
m<5=180-125 = 55°
m<5=m<1 ( alternate angle)
therefore, m<1 = 55°.
hope this helps you.
Answer:
Simplifying
y = 12x + 25
Reorder the terms:
y = 25 + 12x
Solving
y = 25 + 12x
Solving for variable 'y'.
Move all terms containing y to the left, all other terms to the right.
Simplifying
y = 25 + 12x
Step-by-step explanation:
I tried
Answer:
(A)Cost of Rental A, C= 15h
Cost of Rental B, C=5h+50
Cost of Rental C, C=9h+20
(B)
i. Rental C
ii. Rental A
iii. Rental B
Step-by-step explanation:
Let h be the number of hours for which the barbeque will be rented.
Rental A: $15/h
Rental B: $5/h + 50
- Cost of Rental B, C=5h+50
Rental C: $9/h + 20
- Cost of Rental C, C=9h+20
The graph of the three models is attached below
(b)11.05-4.30
When you keep the barbecue from 11.05 to 4.30 when the football match ends.
Number of Hours = 4.30 -11.05 =4 hours 25 Minutes = 4.42 Hours
-
Cost of Rental A, C= 15h=15(4.42)=$66.30
- Cost of Rental B, C=5h+50 =5(4.42)+50=$72.10
- Cost of Rental C, C=9h+20=9(4.42)+20=$59.78
Rental C should be chosen as it offers the lowest cost.
(c)11.05-12.30
Number of Hours = 12.30 -11.05 =1 hour 25 Minutes = 1.42 Hours
- Cost of Rental A, C= 15h=15(1.42)=$21.30
- Cost of Rental B, C=5h+50 =5(4.42)+50=$57.10
- Cost of Rental C, C=9h+20=9(4.42)+20=$32.78
Rental A should be chosen as it offers the lowest cost.
(d)If the barbecue is returned the next day, say after 24 hours
- Cost of Rental A, C= 15h=15(24)=$360
- Cost of Rental B, C=5h+50 =5(24)+50=$170
- Cost of Rental C, C=9h+20=9(24)+20=$236
Rental B should be chosen as it offers the lowest cost.