1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
2 years ago
7

What is true about angles that are complementary to the same angle

Mathematics
1 answer:
ivolga24 [154]2 years ago
7 0
I believe they are all equivalent

Ex.). If angles A, B, and C are all complementary to an angle that is 30 degrees, then all three would be 60 degrees (60+30=90)
You might be interested in
Which set of ordered pairs that satisfy the equation
krok68 [10]

Answer:

3

Step-by-step explanation:

3

5 0
3 years ago
4 Tan A/1-Tan^4=Tan2A + Sin2A​
Eva8 [605]

tan(2<em>A</em>) + sin(2<em>A</em>) = sin(2<em>A</em>)/cos(2<em>A</em>) + sin(2<em>A</em>)

• rewrite tan = sin/cos

… = 1/cos(2<em>A</em>) (sin(2<em>A</em>) + sin(2<em>A</em>) cos(2<em>A</em>))

• expand the functions of 2<em>A</em> using the double angle identities

… = 2/(2 cos²(<em>A</em>) - 1) (sin(<em>A</em>) cos(<em>A</em>) + sin(<em>A</em>) cos(<em>A</em>) (cos²(<em>A</em>) - sin²(<em>A</em>)))

• factor out sin(<em>A</em>) cos(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (1 + cos²(<em>A</em>) - sin²(<em>A</em>))

• simplify the last factor using the Pythagorean identity, 1 - sin²(<em>A</em>) = cos²(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (2 cos²(<em>A</em>))

• rearrange terms in the product

… = 2 sin(<em>A</em>) cos(<em>A</em>) (2 cos²(<em>A</em>))/(2 cos²(<em>A</em>) - 1)

• combine the factors of 2 in the numerator to get 4, and divide through the rightmost product by cos²(<em>A</em>)

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - 1/cos²(<em>A</em>))

• rewrite cos = 1/sec, i.e. sec = 1/cos

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - sec²(<em>A</em>))

• divide through again by cos²(<em>A</em>)

… = (4 sin(<em>A</em>)/cos(<em>A</em>)) / (2/cos²(<em>A</em>) - sec²(<em>A</em>)/cos²(<em>A</em>))

• rewrite sin/cos = tan and 1/cos = sec

… = 4 tan(<em>A</em>) / (2 sec²(<em>A</em>) - sec⁴(<em>A</em>))

• factor out sec²(<em>A</em>) in the denominator

… = 4 tan(<em>A</em>) / (sec²(<em>A</em>) (2 - sec²(<em>A</em>)))

• rewrite using the Pythagorean identity, sec²(<em>A</em>) = 1 + tan²(<em>A</em>)

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (2 - (1 + tan²(<em>A</em>))))

• simplify

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (1 - tan²(<em>A</em>)))

• condense the denominator as the difference of squares

… = 4 tan(<em>A</em>) / (1 - tan⁴(<em>A</em>))

(Note that some of these steps are optional or can be done simultaneously)

7 0
2 years ago
Phil has two rectangular prisms. The height of the second prism is 1/2 times the height of the first prism. The lengths and widt
Vesnalui [34]

The volume of the second prism is also ten times the volume of the first prism.

Let's assume that both prisms have:

width = 3 units

height = 4 units

Prism 1 length = 5 units

Prism 2 length = 50 units

Let's solve their respective volumes to compare...

Volume of prism 1 = length * width * height

                             = 5 * 3 * 4

                             = 60 units ^3

Volume of prism 2 = 50 * 3 * 4

                             = 600 units ^3

Prism 2/ prism 1 = 10

That means prism 2 is ten times the volume of prism 1.

6 0
2 years ago
If AB = 12, AC = 16, and ED = 5, find AE.
AleksAgata [21]

Answer:

AE =15

Step-by-step explanation:

BC=16-12 = 4

AE=x

12/4 = x/5

Cross multiplication

4x=60

x=15

       4x3 = 12

       5x3 =15

5 0
2 years ago
If f (x) = StartRoot x EndRoot + 12 and g (x) = 2 StartRoot x EndRoot, what is the value of (f – g)(144)
Luda [366]

The value of (f-g)(144) is 0

Step-by-step explanation:

We are given:

f(x)=\sqrt{x}+12\,\,and\,\,\\ g(x)=2\sqrt{x}

We need to find value of (f-g)(144)

We will put x=144 for both f(x) and g(x)

(f-g)(144)=f(144)-g(144)\\=\sqrt{144}+12-(2\sqrt{12})\\=12+12-(2(12)\\=24-24\\=0

So, the value of (f-g)(144) is 0

Keywords: Composite Functions

Learn more about Composite Functions at:

  • brainly.com/question/4939434
  • brainly.com/question/2723982
  • brainly.com/question/10772025

#learnwithBrainly

4 0
3 years ago
Read 2 more answers
Other questions:
  • The functions f(x)=−3/4x+2 1/4 and g(x)=(1/2)^x+1 are shown in the graph.
    6·1 answer
  • Steve's doctor has advised him to take protein supplements. He bought two brands, Brand A and Brand B. The table gives the amoun
    12·1 answer
  • Find the slope that passes through these two points.
    15·1 answer
  • 2. Write (and do not solve) a word problem for the following inequality. 3(1/2x-6). &gt;- 70
    5·1 answer
  • What is the value of the expression 2w-2 when 5=w
    15·2 answers
  • How can I solve it.​
    12·1 answer
  • Please help me I can't do this answer
    5·1 answer
  • 2/5 kg of soul fills 1/3 of a container so 1 kg of sulfate in the container? Explain or show your reasoning
    15·1 answer
  • The Thompson family is buying a car that can travel 70 miles
    11·1 answer
  • Find the equation of the line through point (-7,2) and parallel to y=2/5x-1/2
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!