Hello there! I can help you!
7. Okay. So the computer was originally $1,080, and the discount is 20%, but David would still have to pay 80% of the original price. To find the sale price, let's multiply. 1,080 * 80% (0.8) is 864. The sale price of the compuet is $864, but now we must add the sales tax to find the total price. We will multiply by 108%, because 100% (representing the price + 8% is 108%, and doing this will get us stright to the total price. 864 * 108% (1.08) is 933.12. There. David paid a total price of $933.12 for the computer.
8. Okay. So we are looking for the amount of discount for the sweater Suzanne bought. First off, let's subtract the prices to find the difference. 40 - 25 is 15. Now, let's divide that by 40 (the original price) to find the discount. 15/40 is 0.375. Or 37.5% when converted into a percentage. There. Suzanne received a 37.5% discount on the sweater when she bought it.
9. So the car was bought for x dollars. 0.88 represents 88%, so the value of the car is 88% of the previous year. An expression that is a way to describe the change in car value is x * (100 - 0.12)^t, because you car loses 12% of the remaining value each year, which leaves 88% of it remaining, and having the t as the exponent represents the number of years. That expression helps find the value of the car currently and can help you compare the values.
Answer:
− 5 x − 16
Step-by-step explanation:
-2*x and -2*4= -2x+-8
-2x+3x= -5x
-8-8= -16
-5x-16
Answer:
a) 25.15
b)
x = 1
y = t
z = (4pi)^2 + t *(8pi) = 4pi(4pi + 2t)
c) (x,y) = (1, -2pi)
Step-by-step explanation:
a)
First lets calculate the velocity, that is, the derivative of c(t) with respect to t:
v(t) = (-sin(t), cos(t), 2t)
The velocity at t0=4pi is:
v(4pi) = (0, 1, 8pi)
And the speed will be:
s(4pi) = √(0^2+1^2+ (8pi)^2) = 25.15
b)
The tangent line to c(t) at t0 = 4pi has the parametric form:
(x,y,z) = c(4pi) + t*v(4pi)
Since
c(4pi) = (1, 0, (4pi)^2)
The tangent curve has the following components:
x = 1
y = t
z = (4pi)^2 + t *(8pi) = 4pi(4pi + 2t)
c)
The intersection with the xy plane will occurr when z = 0
This happens at:
t1 = -2pi
Therefore, the intersection will occur at:
(x,y) = (1, -2pi)
Slope intercept form is y=mx+b
m=slope
b=y intercept
slope is 4
y=4x+b
subsitute if iin (x,y) form
so x=3 and y=-2 is one solution
subsitute
-2=4 times 3+b
-2=12+b
subtract 12 from both sids
-14=b
the equation is y=4x-14